Уравнение касательной к графику 10. Уравнение касательной

Видеоурок «Уравнение касательной к графику функции» демонстрирует учебный материал для освоения темы. В ходе видеоурока представлен теоретический материал, необходимый для формирования понятия об уравнении касательной к графику функции в данной точке, алгоритм нахождения такой касательной, описаны примеры решения задач с использованием изученного теоретического материала.

В видеоуроке используются методы, улучшающие наглядность материала. В представлении вставлены рисунки, схемы, даются важные голосовые комментарии, применяется анимация, выделение цветом и другими инструментами.

Видеоурок начинается с представления темы урока и изображения касательной к графику некоторой функции y=f(x) в точке M(a;f(a)). Известно, что угловой коэффициент касательной, построенной к графику в данной точке, равен производной функции f΄(a) в данной точке. Также из курса алгебры известно уравнение прямой y=kx+m. Схематично представлено решение задачи нахождения уравнения касательной в точке, которая сводится к нахождению коэффициентов k, m. Зная координаты точки, принадлежащей графику функции, можем найти m, подставив значение координат в уравнение касательной f(a)=ka+m. Из него находим m=f(a)-ka. Таким образом, зная значение производной в данной точке и координаты точки, можно представить уравнение касательной таким образом y=f(a)+f΄(a)(x-a).

Далее рассматривается пример составления уравнения касательной, следуя схеме. Дана функция y=x 2 , x=-2. Приняв а=-2, находим значение функции в данной точке f(a)= f(-2)=(-2) 2 =4. Определяем производную функции f΄(х)=2х. В данной точке производная равна f΄(a)= f΄(-2)=2·(-2)=-4. Для составления уравнения найдены все коэффициенты а=-2, f(a)=4, f΄(a)=-4, поэтому уравнение касательной у=4+(-4)(х+2). Упростив уравнение, получаем у=-4-4х.

В следующем примере предлагается составить уравнение касательной в начале координат к графику функции y=tgx. В данной точке а=0, f(0)=0, f΄(х)=1/cos 2 x, f΄(0)=1. Таким образом, уравнение касательной выглядит у=х.

В качестве обобщения процесс составления уравнения касательной к графику функции в некоторой точке оформляется в виде алгоритма, состоящего из 4 шагов:

  • Вводится обозначение а абсциссы точки касания;
  • Вычисляется f(a);
  • Определяется f΄(х) и вычисляется f΄(a). В формулу уравнения касательной y=f(a)+f΄(a)(x-a) подставляются найденные значения а, f(a), f΄(a).

В примере 1 рассматривается составление уравнения касательной к графику функции у=1/х в точке х=1. Для решения задачи пользуемся алгоритмом. Для данной функции в точке а=1 значение функции f(a)=-1. Производная функции f΄(х)=1/х 2 . В точке а=1 производная f΄(a)= f΄(1)=1. Используя полученные данные, составляется уравнение касательной у=-1+(х-1), или у=х-2.

В примере 2 необходимо найти уравнение касательной к графику функции у=х 3 +3х 2 -2х-2. Основное условие - параллельность касательной и прямой у=-2х+1. Сначала находим угловой коэффициент касательной, равный угловому коэффициенту прямой у=-2х+1. Так как f΄(a)=-2 для данной прямой, то k=-2 и для искомой касательной. Находим производную функции (х 3 +3х 2 -2х-2)΄=3х 2 +6х-2. Зная, что f΄(a)=-2, находим координаты точки 3а 2 +6а-2=-2. Решив уравнение, получаем а 1 =0, а 2 =-2. Используя найденные координаты, можно найти уравнение касательной с помощью известного алгоритма. Находим значение функции в точках f(а 1)=-2, f(а 2)=-18. Значение производной в точке f΄(а 1)= f΄(а 2)=-2. Подставив найденные значения в уравнение касательной, получим для первой точки а 1 =0 у=-2х-2, а для второй точки а 2 =-2 уравнение касательной у=-2х-22.

В примере 3 описывается составление уравнения касательной для ее проведения в точке (0;3) к графику функции y=√x. Решение производится по известному алгоритму. Точка касания имеет координаты х=а, где а>0. Значение функции в точке f(a)=√x. Производная функции f΄(х)=1/2√х, поэтому в данной точке f΄(а)=1/2√а. Подставив все полученные значения в уравнение касательной, получаем у=√а+(х-а)/2√а. Преобразовав уравнение, получаем у=х/2√а+√а/2. Зная, что касательная проходит через точку (0;3), находим значение а. Находим а из 3=√а/2. Отсюда √а=6, а=36. Находим уравнение касательной у=х/12+3. На рисунке изображается график рассматриваемой функции и построенная искомая касательная.

Ученикам напоминаются приближенные равенства Δy=≈f΄(x)Δxи f(x+Δx)-f(x)≈f΄(x)Δx. Принимая х=а, x+Δx=х, Δx=х-а, получаем f(х)- f(а)≈f΄(а)(х-а), отсюда f(х)≈f(а)+f΄(а)(х-а).

В примере 4 необходимо найти приближенное значение выражение 2,003 6 . Так как необходимо отыскать значение функции f(х)=х 6 в точке х=2,003, можем воспользоваться известной формулой, приняв f(х)=х 6 , а=2, f(а)= f(2)=64, f΄(x)=6х 5 . Производная в точке f΄(2)=192. Поэтому 2,003 6 ≈65-192·0,003. Вычислив выражение, получаем 2,003 6 ≈64,576.

Видеоурок «Уравнение касательной к графику функции» рекомендуется использовать на традиционном уроке математики в школе. Учителю, осуществляющему обучению дистанционно, видеоматериал поможет более понятно объяснить тему. Видео может быть рекомендовано для самостоятельного рассмотрения учениками при необходимости углубить их понимание предмета.

ТЕКСТОВАЯ РАСШИФРОВКА:

Нам известно, что если точка М (а; f(а)) (эм с координатами а и эф от а) принадлежит графику функции у =f (x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f"(a) (эф штрих от а).

Пусть даны функция у = f(x) и точка М (a; f(a)), a также известно, что существует f´(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx+m (игрек равный ка икс плюс эм), поэтому задача состоит в отыскании значений коэффициентов k и m.(ка и эм)

Угловой коэффициент k= f"(a). Для вычисления значения m воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(a) = ka+m, откуда находим, что m = f(a) - ka.

Осталось подставить найденные значения коэффициентов kи mв уравнение прямой:

y = kx+(f(a) -ka);

y = f(a)+k(x-a);

y = f (a )+ f "(a ) (x - a ). (игрек равен эф от а плюс эф штрих от а, умноженный на икс минус а).

Нами получено уравнение касательной к графику функции y = f(x) в точке х=а.

Если, скажем, у = х 2 и х= -2 (т.е. а = -2), то f(а) = f(-2) = (-2) 2 =4; f´(x) = 2х, значит, f"(a) = f´(-2) = 2·(-2) = -4. (то эф от а равно четыре, эф штрих от икс равно два икс, значит эф штрих от а равно минус четыре)

Подставив в уравнение найденные значения a = -2, f(a) = 4, f"(a) = -4, получим: у = 4+(-4)(х+2), т.е. у = -4х-4.

(игрек равен минус четыре икс минус четыре)

Составим уравнение касательной к графику функции у = tgx(игрек равен тангенс икс) в начале координат. Имеем: а = 0, f(0) = tg0=0;

f"(x)= , значит, f"(0) = l. Подставив в уравнение найденные значения а=0, f(a)=0, f´(a) = 1, получим: у=х.

Обобщим наши шаги нахождения уравнения касательной к графику функции в точке х с помощью алгоритма.

АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x):

1) Обозначить абсциссу точки касания буквой а.

2) Вычислить f (а).

3) Найти f´(x) и вычислить f´(a).

4) Подставить найденные числа a, f(a), f´(а) в формулуy = f (a )+ f "(a ) (x - a ).

Пример 1. Составить уравнение касательной к графику функции у = - в

точке х = 1.

Решение. Воспользуемся алгоритмом, учитывая, что в данном примере

2) f(a)=f(1)=- =-1

3) f´(x)=; f´(a)= f´(1)= =1.

4) Подставим найденные три числа: а = 1, f(а) = -1, f"(а) = 1 в формулу. Получим: у = -1+(х-1), у = х-2.

Ответ: у = х-2.

Пример 2. Дана функция у = х 3 +3х 2 -2х-2 . Записать уравнение касательной к графику функции у= f(х), параллельной прямой у = -2х +1.

Используя алгоритм составления уравнения касательной, учтем, что в данном примере f(x) = х 3 +3х 2 -2х-2 , но здесь не указана абсцисса точки касания.

Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = -2х+1. А параллельные прямые имеют равные угловые коэффициенты. Значит, угловой коэффициент касательной равен угловому коэффициенту заданной прямой: k кас. = -2. Hok кас. = f"(a). Таким образом, значение а мы можем найти из уравнения f ´(а) = -2.

Найдем производную функции у= f (x ):

f "(x )= (х 3 +3х 2 -2х-2)´ =3х 2 +6х-2; f "(а)= 3а 2 +6а-2.

Из уравнения f"(а) = -2, т.е. 3а 2 +6а-2 =-2 находим а 1 =0, a 2 =-2. Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 0, другая в точке с абсциссой -2.

Теперь можно действовать по алгоритму.

1) а 1 =0, а 2 =-2.

2) f(a 1)= 0 3 +3·0 2 -2∙0-2=-2 ; f(a 2)=(-2) 3 +3·(-2) 2 -2·(-2)-2=6 ;

3) f"(a 1) = f"(a 2) = -2.

4) Подставив значения a 1 = 0, f(a 1) =-2, f"(a 1) = -2 в формулу, получим:

у=-2-2(х-0), у=-2х-2.

Подставив значения а 2 =-2, f(a 2) =6, f"(a 2)= -2 в формулу, получим:

у=6-2(х+2), у=-2х+2.

Ответ: у=-2х-2, у=-2х+2.

Пример 3. Из точки (0; 3) провести касательную к графику функции у = . Решение. Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере f(x) = . Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее, действуем по алгоритму.

1) Пусть х = а — абсцисса точки касания; ясно, что а >0.

3) f´(x)=()´=; f´(a) =.

4) Подставив значения a, f(a) = , f"(a) = в формулу

y=f (a) +f "(a) (x-a) , получим:

По условию касательная проходит через точку (0; 3). Подставив в уравнение значения х = 0, у = 3, получим: 3 = , и далее =6, a =36.

Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение a =36 в уравнение, получим: y=+3

На рис. 1 представлена геометрическая иллюстрация рассмотренного примера: построен график функции у =, проведена прямая у = +3.

Ответ: у = +3.

Нам известно, что для функции y = f(x), имеющей производную в точке х, справедливо приближенное равенство: Δyf´(x)Δx (дельта игрек приближенно равно эф штрих от икс, умноженное на дельта икс)

или, подробнее, f(x+Δx)-f(x) f´(x) Δx (эф от икс плюс дельта икс минус эф от икс приближенно равно эф штрих от икс на дельта икс).

Для удобства дальнейших рассуждений изменим обозначения:

вместо х будем писать а ,

вместо х+Δxбудем писать х

вместо Δх будем писать х-а.

Тогда написанное выше приближенное равенство примет вид:

f(x)-f(a)f´(a)(x-a)

f(x)f(a)+f´(a)(x-a). (эф от икс приближенно равно эф от а плюс эф штрих от а, умноженное на разность икса и а).

Пример 4. Найти приближенное значение числового выражения 2,003 6 .

Решение. Речь идет об отыскании значения функции у = х 6 в точке х = 2,003. Воспользуемся формулой f(x)f(a)+f´(a)(x-a), учтя, что в данном примере f(x)=x 6 , a = 2,f(a) = f(2) = 2 6 =64; x = 2,003, f"(x) = 6x 5 и, следовательно, f"(а) = f"(2) = 6·2 5 =192.

В итоге получаем:

2,003 6 64+192· 0,003, т.е. 2,003 6 =64,576.

Если мы воспользуемся калькулятором, то получим:

2,003 6 = 64,5781643...

Как видите, точность приближения вполне приемлема.

Теме «Угловой коэффициент касательной как тангенс угла наклона» в аттестационном экзамене отводится сразу несколько заданий. В зависимости от их условия, от выпускника может требоваться как полный ответ, так и краткий. При подготовке к сдаче ЕГЭ по математике ученику обязательно стоит повторить задачи, в которых требуется вычислить угловой коэффициент касательной.

Сделать это вам поможет образовательный портал «Школково». Наши специалисты подготовили и представили теоретический и практический материал максимально доступно. Ознакомившись с ним, выпускники с любым уровнем подготовки смогут успешно решать задачи, связанные с производными, в которых требуется найти тангенс угла наклона касательной.

Основные моменты

Для нахождения правильного и рационального решения подобных заданий в ЕГЭ необходимо вспомнить базовое определение: производная представляет собой скорость изменения функции; она равна тангенсу угла наклона касательной, проведенной к графику функции в определенной точке. Не менее важно выполнить чертеж. Он позволит найти правильное решение задач ЕГЭ на производную, в которых требуется вычислить тангенс угла наклона касательной. Для наглядности лучше всего выполнить построение графика на плоскости ОХY.

Если вы уже ознакомились с базовым материалом на тему производной и готовы приступить к решению задач на вычисление тангенса угла наклона касательной, подобных заданиям ЕГЭ, сделать это можно в режиме онлайн. Для каждого задания, например, задач на тему «Связь производной со скоростью и ускорением тела» , мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут попрактиковаться в выполнении задач различного уровня сложности. В случае необходимости упражнение можно сохранить в разделе «Избранное», чтобы потом обсудить решение с преподавателем.

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Yandex.RTB R-A-339285-1 Определение 1

Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Определение 2

Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

  • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
  • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 < α < π 2 или 0 ° < α < 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
  • Если α = π 2 , тогда расположение прямой перпендикулярно о х. Равенство задается при помощи равенства x = c со значением с, являющимся действительным числом.
  • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 < α < π или 90 ° < α < 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.
Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f (x) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

По рисунку видно, что А В является секущей, а f (x) – черная кривая, α - красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

Определение 4

Получаем формулу для нахождения секущей вида:

k = t g α = B C A C = f (x B) - f x A x B - x A , где абсциссами точек А и В являются значения x A , x B , а f (x A) , f (x B) - это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f (x B) - f (x A) x B - x A или k = f (x A) - f (x B) x A - x B , причем уравнение необходимо записать как y = f (x B) - f (x A) x B - x A · x - x A + f (x A) или
y = f (x A) - f (x B) x A - x B · x - x B + f (x B) .

Секущая делит график визуально на 3 части: слева от точки А, от А до В, справа от В. На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Определение 5

Касательная к графику функции f (x) в точке x 0 ; f (x 0) называется прямая, проходящая через заданную точку x 0 ; f (x 0) , с наличием отрезка, который имеет множество значений х, близких к x 0 .

Пример 1

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами (1 ; 2) . Для наглядности, необходимо рассмотреть графики с приближенными к (1 ; 2) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Очевидно, что y = 2 x сливается с прямой у = х + 1 .

Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А. Для наглядности приведем рисунок.

Секущая А В, обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

Определение 6

Касательной к графику функции y = f (x) в точке А считается предельное положение секущей А В при В стремящейся к А, то есть B → A .

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Перейдем к рассмотрению секущей А В для функции f (x) , где А и В с координатами x 0 , f (x 0) и x 0 + ∆ x , f (x 0 + ∆ x) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f (x) = f (x 0 + ∆ x) - f (∆ x) . Для наглядности приведем в пример рисунок.

Рассмотрим полученный прямоугольный треугольник А В С. Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f (x) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f (x 0) = lim ∆ x → 0 ∆ y ∆ x .

Отсюда следует, что f " (x 0) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

То есть получаем, что f ’ (x) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 (x 0) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f " (x 0) .

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

Уравнение касательной к графику функции y = f (x) в точке x 0 , f 0 (x 0) принимает вид y = f " (x 0) · x - x 0 + f (x 0) .

Имеется в виду, что конечным значением производной f " (x 0) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f " (x) = ∞ и lim x → x 0 - 0 f " (x) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f " (x) ≠ lim x → x 0 - 0 f " (x) .

Расположение касательной зависит от значения ее углового коэффициента k x = f " (x 0) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у - k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x < 0 .

Пример 2

Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 - 6 - 3 3 x - 17 - 3 3 в точке с координатами (1 ; 3) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, (1 ; 3) является точкой касания, тогда x 0 = - 1 , f (x 0) = - 3 .

Необходимо найти производную в точке со значением - 1 . Получаем, что

y " = e x + 1 + x 3 3 - 6 - 3 3 x - 17 - 3 3 " = = e x + 1 " + x 3 3 " - 6 - 3 3 x " - 17 - 3 3 " = e x + 1 + x 2 - 6 - 3 3 y " (x 0) = y " (- 1) = e - 1 + 1 + - 1 2 - 6 - 3 3 = 3 3

Значение f ’ (x) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда k x = t g α x = y " (x 0) = 3 3

Отсюда следует, что α x = a r c t g 3 3 = π 6

Ответ: уравнение касательной приобретает вид

y = f " (x 0) · x - x 0 + f (x 0) y = 3 3 (x + 1) - 3 y = 3 3 x - 9 - 3 3

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

Пример 3

Выяснить наличие существования касательной к графику заданной функции
y = 3 · x - 1 5 + 1 в точке с координатами (1 ; 1) . Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y " = 3 · x - 1 5 + 1 " = 3 · 1 5 · (x - 1) 1 5 - 1 = 3 5 · 1 (x - 1) 4 5

Если x 0 = 1 , тогда f ’ (x) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 (x - 1) 4 5 = 3 5 · 1 (+ 0) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 - 0 3 5 · 1 (x - 1) 4 5 = 3 5 · 1 (- 0) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке (1 ; 1) .

Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

Для наглядности изобразим графически.

Пример 4

Найти точки графика функции y = 1 15 x + 2 3 - 4 5 x 2 - 16 5 x - 26 5 + 3 x + 2 , где

  1. Касательная не существует;
  2. Касательная располагается параллельно о х;
  3. Касательная параллельна прямой y = 8 5 x + 4 .

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ - ∞ ; 2 и [ - 2 ; + ∞) . Получаем, что

y = - 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ - ∞ ; - 2 1 15 x 3 - 6 x 2 + 9 x + 12 , x ∈ [ - 2 ; + ∞)

Необходимо продифференцировать функцию. Имеем, что

y " = - 1 15 x 3 + 18 x 2 + 105 x + 176 " , x ∈ - ∞ ; - 2 1 15 x 3 - 6 x 2 + 9 x + 12 " , x ∈ [ - 2 ; + ∞) ⇔ y " = - 1 5 (x 2 + 12 x + 35) , x ∈ - ∞ ; - 2 1 5 x 2 - 4 x + 3 , x ∈ [ - 2 ; + ∞)

Когда х = - 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

lim x → - 2 - 0 y " (x) = lim x → - 2 - 0 - 1 5 (x 2 + 12 x + 35 = - 1 5 (- 2) 2 + 12 (- 2) + 35 = - 3 lim x → - 2 + 0 y " (x) = lim x → - 2 + 0 1 5 (x 2 - 4 x + 3) = 1 5 - 2 2 - 4 - 2 + 3 = 3

Вычисляем значение функции в точке х = - 2 , где получаем, что

  1. y (- 2) = 1 15 - 2 + 2 3 - 4 5 (- 2) 2 - 16 5 (- 2) - 26 5 + 3 - 2 + 2 = - 2 , то есть касательная в точке (- 2 ; - 2) не будет существовать.
  2. Касательная параллельна о х, когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f " (x 0) . То есть необходимо найти значения таких х, когда производная функции обращает ее в ноль. То есть значения f ’ (x) и будут являться точками касания, где касательная является параллельной о х.

Когда x ∈ - ∞ ; - 2 , тогда - 1 5 (x 2 + 12 x + 35) = 0 , а при x ∈ (- 2 ; + ∞) получаем 1 5 (x 2 - 4 x + 3) = 0 .

1 5 (x 2 + 12 x + 35) = 0 D = 12 2 - 4 · 35 = 144 - 140 = 4 x 1 = - 12 + 4 2 = - 5 ∈ - ∞ ; - 2 x 2 = - 12 - 4 2 = - 7 ∈ - ∞ ; - 2 1 5 (x 2 - 4 x + 3) = 0 D = 4 2 - 4 · 3 = 4 x 3 = 4 - 4 2 = 1 ∈ - 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ - 2 ; + ∞

Вычисляем соответствующие значения функции

y 1 = y - 5 = 1 15 - 5 + 2 3 - 4 5 - 5 2 - 16 5 - 5 - 26 5 + 3 - 5 + 2 = 8 5 y 2 = y (- 7) = 1 15 - 7 + 2 3 - 4 5 (- 7) 2 - 16 5 - 7 - 26 5 + 3 - 7 + 2 = 4 3 y 3 = y (1) = 1 15 1 + 2 3 - 4 5 · 1 2 - 16 5 · 1 - 26 5 + 3 1 + 2 = 8 5 y 4 = y (3) = 1 15 3 + 2 3 - 4 5 · 3 2 - 16 5 · 3 - 26 5 + 3 3 + 2 = 4 3

Отсюда - 5 ; 8 5 , - 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y " (x) = 8 5 . Тогда, если x ∈ - ∞ ; - 2 , получаем, что - 1 5 (x 2 + 12 x + 35) = 8 5 , а если x ∈ (- 2 ; + ∞) , тогда 1 5 (x 2 - 4 x + 3) = 8 5 .

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 - 4 · 43 = - 28 < 0

Другое уравнение имеет два действительных корня, тогда

1 5 (x 2 - 4 x + 3) = 8 5 x 2 - 4 x - 5 = 0 D = 4 2 - 4 · (- 5) = 36 x 1 = 4 - 36 2 = - 1 ∈ - 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ - 2 ; + ∞

Перейдем к нахождению значений функции. Получаем, что

y 1 = y (- 1) = 1 15 - 1 + 2 3 - 4 5 (- 1) 2 - 16 5 (- 1) - 26 5 + 3 - 1 + 2 = 4 15 y 2 = y (5) = 1 15 5 + 2 3 - 4 5 · 5 2 - 16 5 · 5 - 26 5 + 3 5 + 2 = 8 3

Точки со значениями - 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках - 1 ; 4 15 , 5 ; 8 3 .

Возможно существование бесконечного количества касательных для заданных функций.

Пример 5

Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x - π 4 - 1 3 , которые располагаются перпендикулярно прямой y = - 2 x + 1 2 .

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется - 1 , то есть записывается как k x · k ⊥ = - 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = - 2 , тогда k x = - 1 k ⊥ = - 1 - 2 = 1 2 .

Теперь необходимо найти координаты точек касания. Нужно найти х, после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x 0 получаем, что k x = y " (x 0) . Из данного равенства найдем значения х для точек касания.

Получаем, что

y " (x 0) = 3 cos 3 2 x 0 - π 4 - 1 3 " = 3 · - sin 3 2 x 0 - π 4 · 3 2 x 0 - π 4 " = = - 3 · sin 3 2 x 0 - π 4 · 3 2 = - 9 2 · sin 3 2 x 0 - π 4 ⇒ k x = y " (x 0) ⇔ - 9 2 · sin 3 2 x 0 - π 4 = 1 2 ⇒ sin 3 2 x 0 - π 4 = - 1 9

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

3 2 x 0 - π 4 = a r c sin - 1 9 + 2 πk или 3 2 x 0 - π 4 = π - a r c sin - 1 9 + 2 πk

3 2 x 0 - π 4 = - a r c sin 1 9 + 2 πk или 3 2 x 0 - π 4 = π + a r c sin 1 9 + 2 πk

x 0 = 2 3 π 4 - a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

Z - множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у:

y 0 = 3 cos 3 2 x 0 - π 4 - 1 3

y 0 = 3 · 1 - sin 2 3 2 x 0 - π 4 - 1 3 или y 0 = 3 · - 1 - sin 2 3 2 x 0 - π 4 - 1 3

y 0 = 3 · 1 - - 1 9 2 - 1 3 или y 0 = 3 · - 1 - - 1 9 2 - 1 3

y 0 = 4 5 - 1 3 или y 0 = - 4 5 + 1 3

Отсюда получаем, что 2 3 π 4 - a r c sin 1 9 + 2 πk ; 4 5 - 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; - 4 5 + 1 3 являются точками касания.

Ответ: необходимы уравнения запишутся как

y = 1 2 x - 2 3 π 4 - a r c sin 1 9 + 2 πk + 4 5 - 1 3 , y = 1 2 x - 2 3 5 π 4 + a r c sin 1 9 + 2 πk - 4 5 + 1 3 , k ∈ Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [ - 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = - 2 x + 1 2 . Красные точки – это точки касания.

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x - x c e n t e r 2 + y - y c e n t e r 2 = R 2 .

Данное равенство может быть записано как объединение двух функций:

y = R 2 - x - x c e n t e r 2 + y c e n t e r y = - R 2 - x - x c e n t e r 2 + y c e n t e r

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 - x - x c e n t e r 2 + y c e n t e r или y = - R 2 - x - x c e n t e r 2 + y c e n t e r в указанной точке.

Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r - R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r - R , а в точках x c e n t e r + R ; y c e n t e r и
x c e n t e r - R ; y c e n t e r будут являться параллельными о у, тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r - R .

Касательная к эллипсу

Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x - x c e n t e r 2 a 2 + y - y c e n t e r 2 b 2 = 1 .

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y = b a · a 2 - (x - x c e n t e r) 2 + y c e n t e r y = - b a · a 2 - (x - x c e n t e r) 2 + y c e n t e r

Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у. Ниже для наглядности рассмотрим рисунок.

Пример 6

Написать уравнение касательной к эллипсу x - 3 2 4 + y - 5 2 25 = 1 в точках со значениями x равного х = 2 .

Решение

Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

x - 3 2 4 x = 2 + y - 5 2 25 = 1 1 4 + y - 5 2 25 = 1 ⇒ y - 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

Тогда 2 ; 5 3 2 + 5 и 2 ; - 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

x - 3 2 4 + y - 5 2 25 = 1 y - 5 2 25 = 1 - x - 3 2 4 (y - 5) 2 = 25 · 1 - x - 3 2 4 y - 5 = ± 5 · 1 - x - 3 2 4 y = 5 ± 5 2 4 - x - 3 2

Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 - x - 3 2 , а нижний y = 5 - 5 2 4 - x - 3 2 .

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

y " = 5 + 5 2 4 - x - 3 2 " = 5 2 · 1 2 4 - (x - 3) 2 · 4 - (x - 3) 2 " = = - 5 2 · x - 3 4 - (x - 3) 2 ⇒ y " (x 0) = y " (2) = - 5 2 · 2 - 3 4 - (2 - 3) 2 = 5 2 3 ⇒ y = y " (x 0) · x - x 0 + y 0 ⇔ y = 5 2 3 (x - 2) + 5 3 2 + 5

Получаем, что уравнение второй касательной со значением в точке
2 ; - 5 3 2 + 5 принимает вид

y " = 5 - 5 2 4 - (x - 3) 2 " = - 5 2 · 1 2 4 - (x - 3) 2 · 4 - (x - 3) 2 " = = 5 2 · x - 3 4 - (x - 3) 2 ⇒ y " (x 0) = y " (2) = 5 2 · 2 - 3 4 - (2 - 3) 2 = - 5 2 3 ⇒ y = y " (x 0) · x - x 0 + y 0 ⇔ y = - 5 2 3 (x - 2) - 5 3 2 + 5

Графически касательные обозначаются так:

Касательная к гиперболе

Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r - α ; y c e n t e r , имеет место задание неравенства x - x c e n t e r 2 α 2 - y - y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r - b , тогда задается при помощи неравенства x - x c e n t e r 2 α 2 - y - y c e n t e r 2 b 2 = - 1 .

Гипербола может быть представлена в виде двух объединенных функций вида

y = b a · (x - x c e n t e r) 2 - a 2 + y c e n t e r y = - b a · (x - x c e n t e r) 2 - a 2 + y c e n t e r или y = b a · (x - x c e n t e r) 2 + a 2 + y c e n t e r y = - b a · (x - x c e n t e r) 2 + a 2 + y c e n t e r

В первом случае имеем, что касательные параллельны о у, а во втором параллельны о х.

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Пример 7

Составить уравнение касательной к гиперболе x - 3 2 4 - y + 3 2 9 = 1 в точке 7 ; - 3 3 - 3 .

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x - 3 2 4 - y + 3 2 9 = 1 ⇒ y + 3 2 9 = x - 3 2 4 - 1 ⇒ y + 3 2 = 9 · x - 3 2 4 - 1 ⇒ y + 3 = 3 2 · x - 3 2 - 4 и л и y + 3 = - 3 2 · x - 3 2 - 4 ⇒ y = 3 2 · x - 3 2 - 4 - 3 y = - 3 2 · x - 3 2 - 4 - 3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; - 3 3 - 3 .

Очевидно, что для проверки первой функции необходимо y (7) = 3 2 · (7 - 3) 2 - 4 - 3 = 3 3 - 3 ≠ - 3 3 - 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y (7) = - 3 2 · (7 - 3) 2 - 4 - 3 = - 3 3 - 3 ≠ - 3 3 - 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

Получаем, что

y " = - 3 2 · (x - 3) 2 - 4 - 3 " = - 3 2 · x - 3 (x - 3) 2 - 4 ⇒ k x = y " (x 0) = - 3 2 · x 0 - 3 x 0 - 3 2 - 4 x 0 = 7 = - 3 2 · 7 - 3 7 - 3 2 - 4 = - 3

Ответ: уравнение касательной можно представить как

y = - 3 · x - 7 - 3 3 - 3 = - 3 · x + 4 3 - 3

Наглядно изображается так:

Касательная к параболе

Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y (x 0) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y " (x 0) · x - x 0 + y (x 0) . Такая касательная в вершине параллельна о х.

Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у. Получаем, что

x = a y 2 + b y + c ⇔ a y 2 + b y + c - x = 0 D = b 2 - 4 a (c - x) y = - b + b 2 - 4 a (c - x) 2 a y = - b - b 2 - 4 a (c - x) 2 a

Графически изобразим как:

Для выяснения принадлежности точки x 0 , y (x 0) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

Пример 8

Написать уравнение касательной к графику x - 2 y 2 - 5 y + 3 , когда имеем угол наклона касательной 150 ° .

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

2 y 2 - 5 y + 3 - x = 0 D = (- 5) 2 - 4 · (- 2) · (3 - x) = 49 - 8 x y = 5 + 49 - 8 x - 4 y = 5 - 49 - 8 x - 4

Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

Получаем:

k x = y " (x 0) = t g α x = t g 150 ° = - 1 3

Отсюда определим значение х для точек касания.

Первая функция запишется как

y " = 5 + 49 - 8 x - 4 " = 1 49 - 8 x ⇒ y " (x 0) = 1 49 - 8 x 0 = - 1 3 ⇔ 49 - 8 x 0 = - 3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

Вторая функция запишется как

y " = 5 - 49 - 8 x - 4 " = - 1 49 - 8 x ⇒ y " (x 0) = - 1 49 - 8 x 0 = - 1 3 ⇔ 49 - 8 x 0 = - 3 x 0 = 23 4 ⇒ y (x 0) = 5 - 49 - 8 · 23 4 - 4 = - 5 + 3 4

Имеем, что точки касания - 23 4 ; - 5 + 3 4 .

Ответ: уравнение касательной принимает вид

y = - 1 3 · x - 23 4 + - 5 + 3 4

Графически изобразим это таким образом:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Касательная - это прямая , которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.

Уравнение касательной выводится из уравнения прямой .

Выведем уравнение касательной, а затем - уравнение нормали к графику функции.

y = kx + b .

В нём k - угловой коэффициент.

Отсюда получаем следующую запись:

y - y 0 = k (x - x 0 ) .

Значение производной f "(x 0 ) функции y = f (x ) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f (x 0 ) . В этом состоит геометрический смысл производной .

Таким образом, можем заменить k на f "(x 0 ) и получить следующее уравнение касательной к графику функции :

y - y 0 = f "(x 0 )(x - x 0 ) .

В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде . Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.

Теперь об уравнении нормали. Нормаль - это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали :

(x - x 0 ) + f "(x 0 )(y - y 0 ) = 0

Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет "холодным душем".

Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .

Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Найдём производную функции:

Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем

В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:

На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.

Следующий пример - тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг - приведение уравнения к общему виду.

Пример 2.

Решение. Найдём ординату точки касания:

Найдём производную функции:

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

Подставляем все полученные данные в "формулу-болванку" и получаем уравнение касательной:

Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):

Составляем уравнение нормали:

Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

Найдём производную функции:

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Находим уравнение касательной:

Перед тем, как привести уравнение к общему виду, нужно его немного "причесать": умножить почленно на 4. Делаем это и приводим уравнение к общему виду:

Составляем уравнение нормали:

Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

Найдём производную функции:

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Получаем уравнение касательной:

Приводим уравнение к общему виду:

Составляем уравнение нормали:

Распространённая ошибка при составлении уравнений касательной и нормали - не заметить, что функция, данная в примере, - сложная и вычислять её производную как производную простой функции. Следующие примеры - уже со сложными функциями (соответствующий урок откроется в новом окне).

Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

Внимание! Данная функция - сложная, так как аргумент тангенса (2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции.

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.