Плотность распределения дискретной случайной величины. Плотность распределения вероятностей

Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

x 1 x 2 x i
p 1 p 2 p i

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

  • Полная группа событий. Противоположные события. Соот­ношение между вероятностями противоположных событий (с вы­водом).
  • Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).
  • Формулы полной вероятности и Байеса (с доказательством). Примеры.
  • Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
  • Локальная теорема Муавра-Лапласа, условия ее примени­мости. Свойства функции Дх). Пример.
  • Асимптотическая формула Пуассона и условия ее примени­мости. Пример.
  • Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
  • Следствия из интегральной теоремы Муавра-Лапласа (с вы­водом). Примеры.
  • Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
  • Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.
  • Функция распределения случайной величины, ее определе­ние, свойства и график.
  • Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дис­персия нсв.
  • Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
  • Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.
  • Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).
  • Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
  • Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.
  • Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».
  • Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.
  • Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.
  • Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
  • Неравенство Маркова (лемма Чебышева) (с выводом). При­мер.
  • Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.
  • Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.
  • Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
  • Неравенство Чебышева для средней арифметической случай­ных величин (с выводом).
  • Центральная предельная теорема. Понятие о теореме Ляпу­нова и ее значение. Пример.
  • Вариационный ряд, его разновидности. Средняя арифмети­ческая и дисперсия ряда. Упрощенный способ их расчета.
  • Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
  • Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.
  • Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.
  • Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
  • Понятие об интервальном оценивании. Доверительная ве­роятность и доверительный интервал. Предельная ошибка выбор­ки. Ошибки репрезентативности выборки (случайные и систематические).
  • Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.
  • Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.
  • Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
  • Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.
  • Критерий согласия х2-Пирсона и схема его применения.
  • Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
  • Линейная парная регрессия. Система нормальных уравне­ний для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
  • Упрощенный способ:
  • Оценка тесноты связи. Коэффициент корреляции (выбороч­ный), его свойства и оценка достоверности.
    1. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.

    Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью
    на определенном участке оси абсцисс. Плотность вероятности
    , как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения она существует толькодля непрерывных случайных величин . Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности
    называетсякривой распределения .

    Свойства плотности вероятности непрерывной случайной величины.



    как производная монотонно неубывающей функции F(х). ☻



    Согласно свойству 4 функции распределения . Так как F(x) - первообразная для плотности вероятности
    (т.к.
    , то по формуле Ньютона-Лейбница приращение первообразной на отрезке [а,b] – определенный интеграл
    . ☻

    Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

      Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле :

    .

    Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).


    Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

    1. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

    Определение . Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,... ,n с вероятностями

    где 0<р

    Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

    Ряд распределения биномиального закона имеет вид:

    Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения
    выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

    Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

    а ее дисперсия

    Определение . Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями
    ,

    Ряд распределения закона Пуассона имеет вид:

    Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения
    выполнено, ибо сумма ряда.

    На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Р m (λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

    Теорема . Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

    и

    "

    Определение . Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

    Для непрерывной случайной величины вводится понятие функции распределения.

    Определение. Функцией распределения вероятностей случайной величины Х называют функцию F(х), определяющую для каждого значения x вероятность того, что случайная величина Х примет значение меньшее x, то есть:

    F(х) = P(X < x)

    Часто вместо термина «функция распределения» используют термин «интегральная функция распределения».

    Свойства функции распределения:

    1. Значения функции распределения принадлежат отрезку:

    0 ≤ F(х) ≤ 1.

    2. Функция распределения есть неубывающая функция, то есть:

    если x > x ,

    то F(x ) ≥ F(x ).

    3. Вероятность того, что случайная величина примет значение, заключенное в интервале :

    вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

    .

    При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

    .

    График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

    Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

    Свойства функции плотности вероятности непрерывной случайной величины

    1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

    2. Функция плотности вероятности не может принимать отрицательные значения:

    а за пределами существования распределения её значение равно нулю

    Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

    Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

    Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

    Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

    Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

    Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

    Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

    График функции F (x ) - парабола:

    График функции f (x ) - прямая:

    Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

    Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

    Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

    Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

    Таким образом, функция плотности вероятности непрерывной случайной величины:

    Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

    .

    x > 10 , то F (x ) = 1 .

    Таким образом, полная запись функции распределения вероятностей:

    График функции f (x ) :

    График функции F (x ) :

    Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

    Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

    Решение. По условию приходим к равенству

    Следовательно, , откуда . Итак,

    .

    Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

    Теперь получим функцию распределения данной случайной величины:

    Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .