Строение металлов и сплавов. Строение металлов и сплавов, их кристаллизация Давным-давно в волшебной стране Эквестрии

Вариант 1.

    В металлах тип связи:

    ковалентная полярная; 2) ионная; 3) металлическая; 4) ковалентная неполярная.

    Во внутреннем строении металлов имеются:

1) только катионы; 2) только анионы; 3) катионы и анионы; 4) катионы и нейтральные атомы.

    Жидкий металл при комнатной температуре – это:

1) железо; 2) ртуть; 3) золото; 4) литий.

    Золото алхимики считали символом:

    Неправильное суждение , о том, что все металлы:

1) обладают ковкостью; 2) обладают металлическим блеском; 3) обладают электропроводностью; 4) летучие вещества.

    Наиболее твёрдый металл:

1) натрий; 2) хром; 3) свинец; 4) литий.

    Металл, обладающий наибольшей плотностью:

1) железо; 2) медь; 3) золото; 4) титан.

    Лучше отражает свет:

1) свинец; 2) серебро; 3) цинк; 4) железо.

    Среди перечисленных веществ укажите те, которые являются металлами:

    кремний; 2) бериллий; 3) бор; 4) алюминий; 5) калий; 6) аргон; 7) сера; 8) олово.

Ответ дайте в виде последовательности цифр в порядке их возрастания.

Тест №4 Тема «Простые вещества – металлы»

Вариант 2.

    Металлы для завершения слоя:

1) отдают электроны; 2) принимают электроны; 3) отдают или принимают электроны; 4) у них слой завершённый.

2. Связь в металлах между катионами осуществляют:

1) свободные электроны; 2) анионы; 3) протоны; 4) нейтроны.

3. Самый пластичный из драгоценных металлов:

1) серебро; 2) платина; 3) золото; 4) ртуть.

    Медь алхимики считали символом:

1) Венеры; 2) Марса; 3) Солнца; 4) Сатурна.

5. Наиболее мягкий металл:

1) хром; 2) титан; 3) молибден; 4) свинец.

6. Наиболее тугоплавкий металл:

1) вольфрам; 2) ртуть; 3) золото; 4) титан.

7. Металл, обладающий наименьшей плотностью:

1) натрий; 2) олово; 3) свинец; 4) железо.

8. Обладает наибольшей электропроводностью:

1) железо; 2) золото; 3) алюминий; 4) серебро.

9. Расставьте перечисленные металлы в порядке увеличения плотности:

1) медь; 2) железо; 3) свинец; 4) алюминий; 5) золото.

Ответ дайте в виде последовательности цифр.

Ответы. Тема «Простые вещества – металлы»

1 вариант.

2 вариант.

убивать таких людей стало невозможно по тем или ... слой за слоем , «срезается» или ... завершённый ... вещества , для ... тест . И, тем ... завершения работы я не просто ... принимать или ... вариантом для ...
  • Грязь)? Книга начертанная! Ведь книга праведников, конечно, в иллийуне (возвышенном). А что тебе даст знать, что такое иллийун? Книга начертанная! (Таблица с Письменами)

    Документ

    ... или система образов проста , лаконична и закончена в своей красоте завершенности ... тем получить доступ к ним, и через них приобщиться к земной жизни для ... вариант универсального космизма. Но уже сейчас мы должны принимать ... электрон , за электроном - керн или ...

  • Давным-давно в волшебной стране Эквестрии

    Документ

    ... завершённости ... простых Минталок или любых других веществ , вызывающих зависимость. Бак, Рейдж, Дэш... Все из них ... отдаться воле Богини. Уже сейчас она принимает ... Тем не менее, для меня дело чести - дать вам этот вариант . Просто ... электронную ... завершения ...

  • Образовательный стандарт образовательная система «Школа 2100»

    Образовательный стандарт

    ... них (принимать ... металлов . Использование различных металлов ... кл. Завершенная предметная линия... завершённых ... и отдых в... электронном вариантах ). В них выставляются отметки (баллы или ... теме «Вещество и 1 Контрольный Значение воздуха для ... тест (выбери номер простого ...

  • Оглавление книги Следующая страница>>

    § 2. Строение металлов и сплавов и методы его изучения

    Кристаллическое строение металлов . Изучением внутреннего строения и свойств металлов и сплавов занимается наука, называемая металловедением.

    Все металлы и сплавы построены из атомов, у которых внешние электроны слабо связаны с ядром. Электроны заряжены отрицательно и если создать незначительную разность потенциалов, то электроны направятся к положительному полюсу, образуя электрический ток. Этим и объясняется электропроводность металлических веществ.

    Все металлы и сплавы в твердом состоянии имеют кристаллическое строение. В отличие от некристаллических (аморфных) тел, у металлов атомы (ионы) расположены в строго геометрическом порядке, образуя пространственную кристаллическую решетку. Взаимное расположение атомов в пространстве и расстояния между ними устанавливаются рентгеноструктурным анализом. Расстояние между узлами в кристаллической решетке называется параметром решетки и измеряется в ангстремах Å (10 -8 см). Параметры решетки различных металлов колеблются от 2,8 до 6 Å (рис. 23).

    Рис. 23. Элементарные кристаллические ячейки :

    а — кубическая объемноцентрированная; б — кубическая гранецентрированная; в —гексагональная

    Для наглядного представления о расположении атомов в кристалле используют пространственные схемы в виде элементарных кристаллических ячеек. Наиболее распространенными типами кристаллических решеток являются кубическая объемноцентрированная, кубическая гранецентрированная и гексагональная.

    В кубической объемноцентрированной решетке расположено девять атомов. Такую решетку имеют хром, вольфрам, молибден, ванадий и железо при температуре до 910° С.

    В кубической гранецентрированной решетке расположено 14 атомов. Такую решетку имеют: медь, свинец, алюминий, золото, никель и железо при температуре 910—1400° С.

    В гексагональной плотноупакованной решетке расположено 17 атомов. Такую решетку имеют: магний, цинк, кадмий и другие металлы.

    Взаимное расположение атомов в пространстве, количество атомов в решетке и междуатомные пространства характеризуют свойства металла (электропроводность, теплопроводность, плавкость, пластичность и т. д.).

    Расстояние между атомами в кристаллической решетке может быть различным по разным направлениям. Поэтому и свойства кристалла по разным направлениям не одинаковы. Такое явление называется анизотропией. Все металлы — тела кристаллические, поэтому они являются телами анизотропными. Тела, у которых свойства во всех направлениях одинаковые, называются изотропными.

    Кусок металла, состоящий из множества кристаллов, обладает в среднем свойствами, одинаковыми во всех направлениях, поэтому он называется квазиизотропным (мнимая изотропность).

    Анизотропность имеет большое практическое значение. Например, путем ковки, штамповки, прокатки в деталях получают правильную ориентацию кристаллов, в результате чего вдоль и поперек детали достигаются различные механические свойства. С помощью холодной прокатки добиваются высоких магнитных и электрических свойств в определенном направлении детали.

    Внутреннее строение металлов и сплавов

    Все твердые тела делятся на аморфные и кристаллические. В аморфных телах атомы расположены хаотично, т. е. в беспорядке, без всякой системы (например, стекло, клей, воск, канифоль и др.). Все металлы и сплавы имеют кристаллическое строение, т. е. атомы расположены в строго определенном порядке, с определенной геометрической закономерностью. (К кристаллическим телам относятся также поваренная соль, кварц, сахарный песок и др.)

    Если атомы металла мысленно соединить прямыми линиями, то получится правильная геометрическая система, называемая пространственной кристаллической решеткой. Из кристаллической решетки можно выделить элементарную кристаллическую ячейку, представляющую наименьший комплекс атомов, повторением которого в трех измерениях можно построить всю решетку.

    Наиболее распространены три типа элементарных кристаллических ячеек металлов (рис. 3): кубическая объемноцентрированная (хром, вольфрам, молибден, железо (до 910° и от 1400 до 1539°С), титан (при температурах свыше 882°С)), кубическая гранецентрированная (алюминий, медь, никель, свинец, золото, серебро, железо (при 910–1400°С)) и гексагональная (цинк, магний, бериллий, титан (до 882°С)).

    Атомы металлов образуют кристаллические решетки благодаря наличию особой металлической связи. В узлах кристаллических решеток металлов расположены положительно заряженные ионы, удерживаемые на определенном расстоянии друг от друга свободными электронами. Такое внутреннее строение обусловливает характерные признаки металлов, такие, как электро- и теплопроводность, пластичность. Свойства металлов зависят не только от типа кристаллической решетки, но и от расстояния между атомами.

    Геометрическая правильность расположения атомов в кристаллических решетках придает металлам особенности, которых нет у аморфных тел.

    Первой особенностью металлов является анизотропия свойств кристаллов, т. е. различие свойств кристаллов в разных направлениях. Анизотропия объясняется неодинаковой плотностью атомов в разных плоскостях кристаллической решетки, так как расстояния между атомами в решетках в разных направлениях неодинаковы. В отличие от кристаллических тел аморфные тела изотропны, т. е. их свойства не зависят от направления.

    У металлических тел анизотропия свойств не выражена так резко, как у отдельных кристаллов. Металлы являются поликристаллическими телами, т. е. они состоят не из одного, а из бесчисленного множества кристаллов, по-разному ориентированных. Произвольность ориентировки каждого кристалла приводит к тому, что в любом направлении располагается приблизительно одинаковое количество различно ориентированных кристаллов. В результате получается, что свойства поликристаллических тел будут в среднем одинаковы во всех направлениях. Это явление называется квазиизотропией (ложной изотропией).



    Второй особенностью металлов как тел кристаллического строения является наличие у них плоскостей скольжения (спайности). По этим плоскостям происходит сдвиг или отрыв (разрушение) частиц кристаллов под действием внешних усилий. У аморфных тел смещение частиц происходит не по определенным плоскостям, а беспорядочно. Излом аморфного тела всегда имеет неправильную, искривленную форму.

    Третьей особенностью металлов как тел кристаллического строения является то, что процесс перехода их из твердого состояния в жидкое и наоборот происходит при определенной температуре, называемой температурой плавления (затвердевания). Аморфные тела переходят в жидкое состояние постепенно и не имеют определенной температуры плавления.

    У веществ в твердом состоянии строение кристаллическое или аморфное. В кристаллическом веществе атомы расположены по геометрически правильной схеме и на определенном расстоянии друг от друга, в аморфном же (стекле, канифоли) атомы расположены беспорядочно.

    У всех металлов и их сплавов строение кристаллическое. На рис.12 показана структура чистого железа. Кристаллические зерна неопределенной формы не похожи на типичные кристаллы - многогранники, поэтому их называюткристаллитами, зернами или гранулами . Однако строение кристаллитов столь же закономерно, как и у развитых кристаллов.

    Рис.12 . Микроструктура чистого железа (х - 150)

    Виды кристаллических решеток . При затвердевании атомы металлов образуют геометрически правильные системы, называемыекристаллическими решетками . Порядок расположения атомов в решетке может быть различным. Многие важнейшие металлы образуют решетки, простейшие (элементарные) ячейки которых представляют форму центрированного куба (- и- железо, хром, молибден, вольфрам, ванадий, марганец), куба с центрированными гранями (- железо, алюминий, медь, никель, свинец) или гексагональную, как у шестигранной призмы, ячейку (магний, цинк,- титан,- кобальт).

    Элементарная ячейка повторяется непрерывно в трех измерениях, образуя кристаллическую решетку, поэтому положение атомов в элементарной ячейке определяет структуру всего кристалла.

    Элементарная ячейка центрированного куба (рис.13 ) состоит из девяти атомов, из которых восемь расположены по вершинам куба, а девятый - в его центре.

    Рис.13. Элементарная ячейкаРис.14. Часть пространственной решет-

    центрированного куба ки центрированного куба

    Для характеристики кристаллической решетки (атомной структуры кристалла) применяют пространственную решетку , которая является геометрической схемой кристаллической решетки и состоит из точек (узлов), закономерно расположенных в пространств.

    Рис.15. Элементарная ячейка кубаРис.16. Часть пространственной ре-

    с центрированными гранями шетки куба с центрированными

    На рис. 14 приведена часть пространственной решетки центрированного куба. Здесь взяты восемь смежных элементарных ячеек; узлы, расположенные по вершинам и в центре каждой ячейки, отмечены кружками. Элементарная ячейка куба с центрированными гранями (рис.15 ) состоит из 14 атомов, из них 8 атомов расположены по вершинам - куба и 6 атомов - по граням.

    На рис.16 приведена часть пространственной решетки куба с центрированными гранями (гранецентрированного куба). На схеме имеется восемь элементарных ячеек; узлы расположены по вершинам и по центрам граней каждой ячейки. Гексагональная ячейка (рис.17 ) состоит из 17 атомов, из них 12 атомов расположены по вершинам шестигранной призмы, 2 атома - в центре оснований и 3 атома - внутри призмы. Для измерения расстояния между атомами кристаллических решеток пользуются специальной единицей, называемойангстремом см.

    Рис.17. Гексагональная ячейка

    Параметр решеток (сторона или шестигранника) у меди 3,6 А, а у алюминия 4,05 А, у цинка 2,67 А и т. д.

    Каждый атом состоит из положительно заряженного ядра и нескольких слоев (оболочек) отрицательно заряженных и движущихся вокруг ядра электронов. Электроны внешних оболочек атомов металлов, называемые валентными , легко отщепляются, быстро движутся между ядрами и называютсясвободными . Вследствие наличия свободных электронов атомы металлов являются положительно заряженными ионами.

    Таким образом, в узлах решеток, обозначенных кружками рис.14 и16 , находятся положительно заряженные ионы. Ионы, однако, не находятся в покое, а непрерывно колеблются положения равновесия. С повышением температуры амплитуда колебаний увеличивается, что вызывает расширение кристаллов, а при температуре плавления колебания частиц усиливаются настолько, что кристаллическая решетка разрушается.

    Во всех кристаллах наблюдаются небольшие отклонения от идеальной решетки - незанятые узлы и различного рода смещения атомов.

    Анизотропность и спайность кристаллов . В отдельных кристаллах свойства различны в разных направлениях. Если взять большой кристалл (существуют лабораторные и даже производственные методы выращивания крупных кристаллов) вырезать из него несколько одинаковых по размеру, но различно ориентированных образцов, и испытать их свойства, то иногда наблюдается весьма значительная разница в свойствах между отдельными образцами. Например, при испытании образцов, вырезанных из кристалла меди, относительное удлинение изменялось в пределах от 10 - 50 %, а предел прочности-от 14 до 35 кГ/мм 2 для различных образцов. Это свойство кристаллов называютанизотропностью . Анизотропность кристаллов объясняется особенностями расположения атомов в пространстве.

    Следствием анизотропности кристаллов является спайность , которая выявляется при разрушении. В местах излома кристаллов можно наблюдать правильные плоскости, указывающие на смещение частиц под влиянием внешних сил не беспорядочное, а правильными рядами, в определенном направлении, соответственно расположению частиц в кристалле. Эти плоскости называютсяплоскостями спайности .

    Аморфные тела изотропны, т. е. все их свойства одинаковы во всех направлениях. Излом аморфного тела всегда имеет неправильную искривленную, так называемую, раковистую поверхность.

    Металлы, затвердевшие в обычных условиях, состоят не из одного кристалла, а из множества отдельных кристаллитов, различно ориентированных друг к другу, поэтому свойства литого металла приблизительно одинаковы во всех направлениях; это явление называют квазиизотропностью (кажущейся изотропностью).

    Аллотропия металлов (или полиморфизм) - их свойство перестраивать решетку при определенных температурах в процессе нагревания или охлаждения. Аллотропию обнаруживают все элементы, меняющие валентность при изменении температуры: например, железо, марганец, никель, олово и др. Каждое аллотропическое превращение происходит при определенной температуре. Например, одно из превращений железа происходит при температуре 910°С, ниже которой атомы составляют решетку центрированного куба (см.рис.14 ), а выше - решетку гранецентрированного куба (см.рис.16 ).

    Та или иная структура называется аллотропической формой или модификацией. Различные модификации обозначают греческими буквами , , и т. д., причем буквойобозначают модификацию, существующую при температурах ниже первого аллотропического превращения. Аллотропические превращения сопровождаются отдачей (уменьшением) или поглощением (увеличением) энергии.

    Кристаллизация металлов . Кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое (первичная кристаллизация ). Перекристаллизацию из одной модификации в другую при остывании эатвердевшего металла называют (вторичной кристаллизацией ). Процесс кристаллизации металла легче всего проследить с помощью счетчика времени и термоэлектрического пирометра, который представляет собой милливольтметр, подключенный к термопаре. Термопару (две разнородные проволоки спаянные концами) погружают в расплавленный металл. Возникающий при этом термоток пропорционален температуре металла и стрелка милливольтметра отклоняется, указывая эту температуру по градуированной шкале.

    Показания пирометра автоматически записываются во времени и по полученным данным строят кривые охлаждения в координатах «температура - время» (такие кривые вычерчивает самописец).

    Температура, соответствующая какому-либо превращению в металле, называется критической точкой .

    На рис.18, а приведена кривая нагрева металла. Здесь точка а - начало плавления, точкаb - окончание плавления.

    Рис.18. Кривые нагревания (а ) и охлаждения (б - без петли,

    в - с петлей) металла

    Участок а b указывает на неизменность температуры во времени при продолжающемся нагревании. Это показывает, что тепловая энергия затрачивается на внутреннее превращение в металле, в данном случае. на превращение твердого металла в жидкий (скрытая теплота плавления).

    Переход из жидкого состояния в твердое при охлаждении сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладить несколько ниже температуры плавления. Поэтому площадка на кривой охлаждения (рис.19,6 ) находится несколько нижеt пл при температуре переохлажденияt пр .

    У некоторых металлов переохлаждение (t пл - t пр ) может оказаться весьма значительным (например, у сурьмы до 40°С) и при температуре переохлажденияt пр (рис. 18 , в ) сразу бурно начинается кристаллизация, в результате чего температура скачком повышается почти доt пл . В этом случае на графике вычерчивается петля теплового гистерезиса.

    При затвердевании и при аллотропическом превращении в металле вначале возникают зародыши кристалла (центры кристаллизации), вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку.

    Таким образом, процесс кристаллизации складывается из двух этапов: образования центров кристаллизации и роста кристаллов.

    У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу и точки их соприкосновения определяют границы кристаллитов (зерен).

    Кристаллизация железа . Рассмотрим в качестве примера кристаллизацию и критические точки железа.

    Рис.19 . Кривые охлаждения и нагревания железа

    На рис.19 приведены кривые охлаждения и нагревания чистого железа, которое плавится при температуре 1539 0 С. Наличие критических точек при меньших температурах указывает на аллотропические превращения в твердом железе.

    Критические точки обозначаются буквой А , при нагревании обозначаютА c и при охлажденииAr индексы 2, 3, 4 служат для отличия аллотропических превращений (индекс 1 обозначает превращение на диаграмме состоянияFe - Fe 3 C .

    При температурах ниже 768 0 С железо магнитно и имеет кристаллическую решетку центрированного куба. Эту модификацию называют-железо ; при нагревании она в точкеАс 2 переходит в немагнитную модификацию-железо . Кристаллическая структура при этом не меняется.

    В точке Ас 3 при температуре 910 0 С-железо переходит в-железо с кристаллической решеткой гранецентрированного куба.

    В точке Ас 4 при температуре 1401 0 С-железо переходит в-железо , причем кристаллическая решетка вновь перестраивается из гранецентрированного куба в центрированный куб.

    При охлаждении происходят те же переходы, только в обратной последовательности.

    Из перечисленных превращений наибольшее практическое значение имеют превращения А 3 как при нагреве (Ас 3 ), так и при охлаждении (А r 3 ).

    Превращение в точке А 3 сопровождается изменением объема, так как плотность кристаллической решетки-железа больше плотности решетки-железа , в точкеАс 3 объем уменьшается, в точкеAr 3 - увеличивается.

    Еталлы, как и все окружающие нас тела, состоят из отдельных невидимых даже в самый сильный микро­скоп частиц, называемых атомами. Но атомы в свою очередь построены из ещё более мелких частиц: протонов, электронов и нейтронов. Протоны и электроны имеют электрические заряды: протон - положительный заряд, а электрон - отрицательный, нейтрон же не имеет никакого электрического заряда.

    Если два протона «находятся близко, они отталкива­ются друг от друга, так как они заряжены одноимённым электричеством. Так же ведут себя и два электрона. На­против, протон и электрон притягиваются друг к другу, причём силы взаимного притяжения протона и электрона равны между собой, т. е. протон обладает элементарным электрическим зарядом, равным заряду электрона.

    Атом в нормальном состоянии, т. е. когда он содержит одинаковое количество протонов и электронов, не обла­дает электрическим зарядом. Но бывают такие состояния атома, когда он приобретает или теряет электроны. Тогда атом становится электрически заряженным. При избытке электронов атом заряжен отрицательным электричеством, а при нехватке электронов он заряжен положительным электричеством. Вот такие атомы, в которых имеется из­быток или недостаток электронов, называются ионами.

    Как же располагаются элементарные частицы в атоме?

    В настоящее время считают, что атом построен следую­щим образом. Протоны и нейтроны составляют ядро, на­ходящееся в центре атома. Вокруг ядра обращаются электроны, которые образуют электронную обо­лочку атома. В каждом атоме количество электронов равно количеству протонов.

    Электроны в электронной оболочке расположены слоями. В каждом слое может поместиться лишь опреде* лённое количество электронов. Первый слой, окружающий непосредственно ядро, может вместить лишь два элект­рона, второй слой - 8, третий - от 8 до 18 электронов. Каждый новый слой электронов при переходе от одного атома к другому образуется обычно после заполнения близлежащего к ядру внутреннего слоя.

    Например, ядро атома натрия, как установлено, имеет 11 протонов, а его 11 электронов распределены в трёх оболочках: в первой - 2, во второй - 8 и в третьей -

    1 электрон. Ядро атома рубидия содержит 37 протонов и окружено 37 электронами, котс^рые расположены в пяти оболочках: в первой - 2, во второй - 8, в третьей-18, в четвёртой - 8, в пятой - 1 электрон. Ещё более слож­ное строение имеет атом урана. Его ядро содержит 92 про­тона, а в электронной оболочке имеется 92 электрона.

    Протон и нейтрон почти одинаковы по весу, а электрон почти в 1840 раз легче протона. Значит, основная масса атома содержится в его ядре. Чем большее количество нейтронов и протонов содержится в ядре, тем больший вес имеет атом.

    Вес атома, например, в граммах выражать очень не­удобно: потребовалось бы писать десятки нулей после за­пятой. Поэтому ввели понятие об относительном весе ато­мов, об атомном весе. Вначале за единицу был при­нят атомный вес водорода; с ним сравнивали атомные веса всех других элементов.

    Стройную систему химических элементов создал вели­кий русский химик Д. И. Менделеев в 1869 году, на основе открытого им периодического закона.

    Сущность закона Менделеева состоит в том, что все химические элементы, расположенные один за другим в порядке возрастания атомных весов, образуют ряд, в ко­тором химические свойства элементов через определённое количество элементов периодически повторяются.

    Д. И. Менделеев расположил химические элементы в своей таблице так, что элементы, помещённые в одних и тех же вертикальных столбцах, обладают сходными хими­ческими свойствами. Зная место элемента в таблице, мож­но определить большинство химических свойств элемента и его соединений. Каждый химический элемент в таблице Менделеева имеет порядковый номер. Его теперь называют числом Менделеева. Этот номер указывает число протонов в ядре. В одни и те же вертикаль­ные столбцы таблицы попадают атомы с одинаковым числом электронов во внешней оболочке.

    В зависимости от числа электронов во внешней оболоч­ке меняются химические и физические свойства элемента.

    Атомы одного и того же элемента, отличающиеся друг от друга лишь числом нейтронов в ядре, называются изо­топами. «Изотоп» - греческое слово. Оно обозначает «занимающий одно и то же место». Изотопы каждого эле­мента располагаются в одной и той же клетке таблицы Менделеева, поскольку заряд ядра (количество прогонов) у изотопов одного и того же элемента одинаков. Металлы в отличие от жидких и газообразных тел в обычных усло­виях являются кристаллическими телами. Кристалл - это правильная фигура, ограниченная пло­скими поверхностями.

    Внутреннее строение кристаллов в настоящее время изучено довольно хорошо с помощью рентгеновских лу­чей. Освещая ими кристаллы, получают рентгенограмму, т. е. картину на фотопластинке, по которой определяют расположение атомов в кристаллической решётке и рас­стояния между ними. Рентгенограммы показали, что ионы металлов «укладываются» в кристалле примерно так же, как располагаются в ящике твёрдые шары.

    Атомы разных металлов образуют неодинаковые кри­сталлические решётки. Чаще всего встречаются три типа решёток.

    Первый тип - кубическая объёмноцентрированная ре­шётка (рис. 1). Атомы металла в такой решётке нахо­дятся в вершинах и центре куба. Каждый атом окружён

    Восемью атомами. Такую решётку имеют металлы вана­дий, вольфрам, молибден, литий, хром и другие.

    Второй тип решётки - кубическая гранецентрирован - иая (рис. 2). Атомы металла в ней расположены по вер­шинам граней куба. Такой решёткой обладают, напри­мер, алюминий, свинец, золото, серебро, никель, торий.

    Третий тип - гексагональная (шестиугольная) плотно упакованная решётка (рис. 3). Она встречается у цинка, магния, кадмия, бериллия.

    На рис. 1-3 атомы условно изображены в виде ша­риков. В зависимости от типа решётки атомы занимают в ней больше или меньше места. Например, в кубической объёмноцентрированной решётке атомы занимают 68% пространства, а в кубической гранецентрированной-74%.

    Расположение атомов в кристаллической решётке ока­зывает большое влияние на свойства металла.

    У некоторых металлов кристаллическая решётка может перестраиваться из одного типа в другой. Например, чис­тое железо при температурах ниже 910° имеет кубическую
    объёмноцентрированную решётку, а выше 910° решётка становится гранецентрированной. Свойством изменять кри­сталлическую решётку обладают и такие металлы, как олово, уран, титан, таллий, цирконий, лантан, церий.

    Свойство веществ образовывать решётки разной фор­мы называют аллотропией; в переводе с греческого

    Языка это слово означает «другой поворот», «другое свой­ство». Общеизвестна аллотропия у кристаллического углерода. Он может находиться в виде графита и в виде алмаза. Графит и алмаз построены из атомов углерода; отличие их только в строении кристаллической решётки. А какая огромная разница в свойствах! Графит - мягкий,

    Непрозрачный минерал чёрного цвега, алмаз, напротив, прозрачен, бесцветен и твёрд.

    Атомы в кристаллической решётке металлов располо­жены столь близко друг к другу, что их внешние элект­роны имеют возможность двигаться не только вокруг одного атома, а вокруг многих атомов. Следовательно, внешние электроны, распределяющиеся в металле равно­мерно, свободно перемещаются по всему куску металла, образуя своеобразный электронный газ.

    Таким образом, любой металл представляет собой решётку из правильно располо­женных положительных ионов, заполнен­ную электронным газом. Высокая прочность ме­таллов и объясняется наличием электронного газа, кото­рый обволакивает все ионы, превращая металлический кристалл как бы в одно целое.

    Ионы, находящиеся в определённых местах (узлах) кри­сталлической решётки, могут совершать, однако, движе­ние - колебание. В ненагретом металле колебания ионов замедлены, в нагретом - ионы испытывают сильное коле­бание. Чем выше температура, тем сильнее раскачи­ваются ионы. Наконец, наступает момент, когда силы взаимодействия уже не могут удержать ионы в узлах кристаллической решетки и она разрушается; металл из твёрдого состояния переходит в жидкое. Это и есть тем­пература плавления.

    Если два расплавленных металла тщательно переме­шать, то после затвердевания получится сплав этих ме­таллов. Сплавы получаются и при сплавлении металла с неметаллом, например железа с углеродом, алюминия с кремнием и т. д. Свойства полученного сплава зависят не только от того, какие элементы входят в сплав, но и от внутреннего строения, или, как говорят, структуры сплава. Сплав является тоже кристаллическим телом.

    Строение сплавов может быть различно. Составные части сплава могут образовать либо механическую смесь, либо твёрдый раствор, либо химиче­ское соединение. Но есть сплавы, в которых име­ются одновременно и механические смеси, и твёрдые рас­творы, и химические соединения.

    Механическая смесь получается в том случае, когда составные части не взаимодействуют химически, а нахо­дятся в сплаве в виде самостоятельных мелких кристал­

    Ликов. Их можно наблюдать при рассматривании отпо­лированной поверхности в микроскоп. Механические смеси образуются, например, при сплавлении свинца с сурьмой, висмута с кадмием и др.

    Каждый знает раствор сахара или поваренной соли в иоде. Растворяя сахар или поваренную соль в воде, можно получить однородное вещество - жидкий раствор. В ста­кане воды можно растворить различное количество сахара

    Оказывается, что подобные однородные системы переменного состава образуются и в твёрдых телах. Их называют твёрдыми растворами. В них атомы растворённого вещества и раство­рителя «рассеяны», перемешаны между собой. В кристаллической решётке вещества, являющегося растворителем, некоторые его атомы замещаются атомами растворённого вещества (рис. 4). Такие растворы называются твёр­дыми растворами замеще­ния. Их образуют при сплавле­нии, например, металлы медь и никель, железо и хром, зо­лото и медь, серебро и золото, медь и платина и др.

    Замещение одних атомов другими в кристаллической решётке происходит в том случае, если атомы растворяе­мого металла близки по своим размерам атомам раство* рителя. Если разница в размерах атомов превышает 15%, твёрдый раствор замещения образоваться не может.

    При очень большой разнице в размерах атомов обра­зуются твёрдые растворы внедрения. Они чаще всего получаются тогда, когда металл растворяет в себе неметаллические элементы, атомы которых значительно меньше атомов металла. Самым распространённым спла­вом, построенным по типу твёрдых растворов внедрения, является сплав железа с углеродом; этот сплав назы­вается сталью. При образовании твёрдого раствора внедрения атомы внедряющегося элемента располагаются
    в промежутках кристаллической решётки между атомами растворителя. Кристаллическая решётка твёрдого рас­твора внедрения показана на рис. 5.

    А много ли можно растворить одного металла в дру­гом? Неограниченная растворимость присуща далеко не всем металлам. В меди, например, может раствориться сколько угодно никеля, точно так же и в никеле можно растворить любое количество меди. Растворителем счи­тают тот металл, которого больше в сплаве по весу.

    Многие металлы обладают ограниченной раст­воримостью. Например, в алюминии можно раство­рить не более 5,5% меди по весу. При большем количе­стве медь находится в спла­ве в виде отдельных нераст - ворённых частиц. Чем выше температура твёрдого раст­вора, тем больше меди мож­но растворить в алюминии (но не более 5,5%).При ох­лаждении этого сплава медь выделяется в виде мельчай­ших, очень твёрдых и хруп­ких частиц.

    Какова природа этих ча­стиц? Оказывается - это не чистая медь, а её х и м и ч е - ское соединение с алюминием. Избыток меди в сплаве взаимодействует с алюминием химически. Кристаллики любого химического соединения в сплаве имеют вполне определённый состав. Так, например, при образовании химических соединений: железа с углеродом, называемого карбидом железа, три атома железа химически связаны с одним атомом углерода; алюминия с медью-два атома алюминия сое­динены с одним атомом меди. Для образования карбидов вольфрама или ванадия нужно, чтобы соотношение ато­мов этих металлов и атомов углерода было равно 1: 1, а в карбиде хрома 23 атома хрома взаимодействуют с ше­стью атомами углерода.

    Кристаллические решётки химических соединений очень сложны. При сильном разогревании сплава кри­сталлы химических соединений могут растворяться в твёр-

    Дом растворе сплава, а при снижении температуры нагре­вания образовываться вновь.

    Сплавы, применяемые в технике, имеют сложный хи­мический состав. Высокопрочные стали, например, имеют в своем составе до десятка различных химических эле­ментов. Чем сложнее состав и строение сплава, тем раз­нообразнее его свойства.

    Редкие металлы, вводимые в состав сталей и сплавов, улучшают их качество, коренным образом изменяют пер­воначальные свойства сплавов, так как они часто обра­зуют кристаллы химических соединений, упрочняющих твёрдый раствор.

    Металлурги пользуются редкими металлами для того, чтобы выплавленные стали и сплавы были более прочны, более твёрды, обладали нужной пластичностью, упруго­стью, жароупорностью, химической" стойкостью и т. д. О том, какие это свойства и как они изменяются при до­бавке редких металлов, будет рассказано ниже.