Деление бактериальной клетки. Основные виды деления бактерий и факторы ограничения роста популяции Типы деления и способы раздела микробных клеток

Известно много способов размножения, наблюдаемых у различных бактерий. У подавляющего числа представителей этой группы микроорганизмов размножение осуществляется путем деления клеток на две части.

В средней части физиологически подготовленной к размножению клетки за счет впячивания цитоплазматической мембраны образуется поперечная перегородка. Расщепляясь, она разделяет клетку на две доловинки. Образовавшиеся новые клетки могут быть несколько неодинаковыми по размеру, так как перегородка не всегда проходит посередине материнской клетки.

Кокки в процессе размножения последовательно делятся в одной, двух или трех взаимно перпендикулярных плоскостях. После деления они остаются в той или иной мере скрепленными друг с другом, в результате чего возникают сочетания кокков, отличающиеся по взаимному расположению (см. рис. 1): диплококки - парные кокки; стрептококки - цепочки кокков; тетракокки - по четыре кокка; сарцины - в форме правильных тючков по 8, 16 шт.; стафилококки - скопления, напоминающие грозди винограда. При очень слабой связи или ее отсутствии между возникающими при делении клетками образуются микрококки, во взаимном расположении которых нет никаких закономерностей. Они расположены поодиночке или в виде случайных скоплений по несколько экземпляров.

Палочки (бактерии, бациллы), подобно коккам, могут располагаться парами по длине - диплобактерии и цепочками - стрептобактерии. Большинство же палочек располагается одиночно, беспорядочно. По внешним очертаниям отдельные представители папочковидных заметно отличаются друг от друга. Известны палочки строго цилиндрической формы, бочковидные, с резко обрубленными, вогнутыми или заостренными концами и др.

Размножение делением не сводится только к удвоению числа клеток. Структурные элементы и вещества материнской клетки еще и перераспределяются между возникающими новыми клетками. Большая часть клеток нового поколения наследует бездефектные структуры родительских организмов, вторая - менее полноценные. В связи с таким распределением по прошествии нескольких циклов деления образуется какое-то количество нежизнеспособных клеток. Устайовлено, что доля таких клеток, приходящаяся на каждый цикл деления, составляет примерно 10 % общего числа.

Бактерии обладают большой скоростью размножения, которая зависит от условий питания, температуры, доступа воздуха и др.

При благоприятных условиях _клетка может делиться через каждые 20-30 мин, т. е. за сутки может произойти 48-72 цикла удвоения. Из одной клетки за это время возникло бы 4714169·10 15 клеток, через 36 ч микробная масса составила бы около 400 т.

Если бы размножение постоянно проходило с такой скоростью, то из одной клетки в течение 5 дней могло бы образоваться такое количество клеток, что общий объем их оказался бы равным объему всех морей и океанов.

Практически беспрерывного деления микробов не происходит. Размножению их мешают многие моменты: истощение питательной среды, накопление продуктов собственного обмена и другие физические, химические и биологические факторы внешней среды. Так, при снижении температуры на 10 °С скорость размножения снижается в 2-3 раза.

Попадая в новые условия, на свежий субстрат, микробы не сразу начинают размножаться. Проходит некоторое время до начала увеличения их числа (фаза задержки роста), в течение которого они приспосабливаются к среде обитания и подготавливают самую среду. После этого начинается бурное размножение, замедляющееся затем по мере исчерпания питательных ресурсов и накопления продуктов жизнедеятельности бактерий в среде.

Быстрое развитие микробиологической порчи продуктов - скисание, окисление, плесневение, гниение и др. - как раз и объясняется исключительно высокой скоростью размножения бактерий.

Деление бактериальных клеток называется “бинарным”, во время которого удвоенные нуклеоиды связаны с плазматической мембраной и расходятся за счет растяжения мембраны между нуклеоидами, а затем образуется перетяжка или септа, делящая клетку надвое. Нуклеоид же представляет собой циклическую гигантскую (1,6 мм) молекулу ДНК, образующую многочисленные петлевые домены в состоянии сверхспирализации.

Время между делениями бактериальных клеток в среднем составляет 20-30 мин. За это время происходят репликация ДНК нуклеоида, сегрегация, отделение сестринских нуклеоидов и их дальнейшее расхождение, образования септы и цитотомия, делящей исходную клетку ровно пополам.

Оказалось, что у бактериальных клеток в начале синтеза ДНК, который начинается с репликации, обе растущие молекулы ДНК связаны с плазматической мембраной (рис. 330). Параллельно с синтезом ДНК происходит деспирализация петлевых доменов за счет работы ряда ферментов (топоизомеразы, гиразы, лигазы и др), что приводит к физическому обособлению двух дочерних (или сестринских) хромосом-нуклеоидов, которые еще находятся в тесном контакте друг с другом. После такой сегрегации нуклеоидов происходит их расхождение от центра клетки, места их бывшего расположения, на четверть длины клетки в двух противоположных направлениях. В результате этого в клетке располагаются два нуклеоида. Каков механизм этого расхождения следующий.

Было устанволено, что в процессе расхождения нуклеоидов принимают участие несколько групп специальных белков. Один из них Muk В, представляет собой гигантский белок (мол.масса около 180 кДа, длина 60 нм), состоящий из центрального спирального участка, и концевых глобулярных участков, напоминающий по структуре нитевидные белки эукариот (цепь миозина II, кинезина). На N-конце Muk В связывается с ГТФ и АТФ, а на С-конце – с молекулой ДНК. На этом основании белок Muk В считают моторным белком, участвующим в расхождении нуклеоидов.

Кроме белка Muk В в расхождении нуклеоидов участвуют пучки фибрилл, содержащих белок Caf A, который может связываться с тяжелыми цепями миозина, подобно актину (рис. 331).

Образование перетяжки, или септы напоминает цитотомию животных клеток. В образовании септ принимают участие фибриллярные термочувствительные белки (семейства Fts). Это группа из нескольких белков, среди которых наиболее изучен белок FtsZ. Он сходен у большинства бактерий, архибактерий, обнаружен в микоплазмах и хлоропластах. Это глобулярный белок, сходный по своей аминокислотной последовательности с тубулином. Во время деления клетки весь этот белок локализуется в зоне септы, образует сократимое кольцо напоминающее акто-миозиновое при делении клеток животных (рис. 332).

Параллельно образованию септы происходит наращивание муреинового слоя бактериальной клеточной стенки за счет работы полиферментативного комплекса РВР-3, синтезирующего пептидогликаны.

Таким образом, при делении бактериальных клеток наблюдаются процессы сходные с делением эукариот: расхождение хромосом (нуклеоидов) за счет взаимодействия моторных и фибриллярных белков, образование перетяжки за счет фибриллярных белков, образующих сократимое кольцо. В отличие от эукариот у бактерий в этих процессах принимают участие совсем другие белки.

  • 9. Характеристика эукариотических микроскопических организмов. Отличительные черты простейших, вызывающих инфекционные заболевания.
  • 10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
  • 11. Морфология бактерий. Химический состав бактериальной клетки.
  • 12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
  • 13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
  • 14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
  • 15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
  • 16. Морфология бактерий. Запасные включения бактериальной клетки.
  • 17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
  • 18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
  • 19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
  • 20. Бактериальное ядро. Строение, состав. Характеристика днк.
  • 21. Бактериальное ядро. Особенности генетической системы бактерии. Типы репликации днк бактерии.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
  • 23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
  • 24. Бактериальное ядро. Плазмиды. Биологическая роль, отличия от вирусов, виды плазмид.
  • 25. Морфологическая дифференцировка прокариот. Формы клеток. Покоящиеся формы. Процесс поддержания состояния покоя.
  • 26. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
  • 27. Морфологическая дифференцировка прокариот. Биохимические и физиологические изменения в процессе прорастания эндоспроры. Факторы устойчивости эндоспор в окружающей среде.
  • 28. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
  • 29. Классификация и систематика бактерий. Классификация бактерий по Берджи. Признаки, используемые при описании бактерий. Характеристика основных групп бактерий по классификатору Берджи.
  • 30. Классификация и систематика бактерий. Категории бактерий. Особенности эубактерий и архебактерий.
  • 31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
  • 32. Влияние физических факторов на микроорганизмы. Температура. Способность к росту при различных температурных условиях.
  • 33. Влияние физических факторов на микроорганизмы. Температура. Способность к выживанию в экстремальных температурных условиях.
  • 34. Влияние физических факторов на микроорганизмы. Влажность.
  • 35. Влияние физических факторов на микроорганизмы. Давление. Осмотическое давление. Атмосферное. Гидростатическое давление и вакуум.
  • 36. Влияние физических факторов на микроорганизмы. Лучистая энергия, уфл, ультразвук.
  • 37. Влияние химических факторов на микроорганизмы. Кислотность и щелочность. Поваренная соль.
  • 38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
  • 39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
  • 40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
  • 41. Принципы консервирования пищевых продуктов, основанные на методах воздействия на бактерии различных факторов внешней среды. Влияние антибиотиков.
  • 42. Питание микроорганизмов. Ферменты микроорганизмов. Классы и виды ферментов. Пути катаболизма.
  • 43. Питание микроорганизмов. Механизмы транспорта питательных веществ в клетку. Пермеазы, ионофиоры. Характеристика процессов симпорта и антипорта. Транспорт железа.
  • 45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы
  • 51. Метаболизм бактерий. Фотосинтез. Виды фотосинтезирующих бактерий. Фотосинтетический аппарат.
  • 53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
  • 54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
  • 56. Биосинтетические процессы. Ассимиляция различных веществ.
  • 57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
  • 58. Биосинтетические процессы. Образование вторичных метаболитов. Токсинообразование. Виды токсинов.
  • 59. Биосинтетические процессы. Образование вторичных метаболитов. Витамины, сахара, ферменты.
  • 60. Регуляция метаболизма. Уровни регуляции метаболизма. Индукция. Репрессия.
  • 62. Основы экологии микроорганизмов. Экология микробных сообществ.
  • 63. Основы экологии микроорганизмов. Микроорганизмы воздуха.
  • 64. Основы экологии микроорганизмов. Микроорганизмы морских водных экосистем.
  • 65. Основы экологии микроорганизмов. Микроорганизмы солоноватых водных экосистем.
  • 66. Основы экологии микроорганизмов. Микроорганизмы пресноводных экосистем.
  • 67. Основы экологии микроорганизмов. Микроорганизмы почвенных экосистем.
  • 68. Основы экологии микроорганизмов. Микроорганизмы почв. Микориза.
  • 69. Основы экологии микроорганизмов. Круговорот углерода, водорода и кислорода.
  • 70. Основы экологии микроорганизмов. Круговорот азота, фосфора и серы.
  • 71. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Ротовая полость. Бактериальные заболевания.
  • 72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
  • 73. Основы экологии микроорганизмов. Симбионты организма человека. Дыхательные пути, выделительная, половая система.
  • 74. Основы экологии микроорганизмов. Симбионты организма человека. Кожа, конъюктива глаза, ухо.
  • 75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
  • 76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
  • 79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
  • 81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
  • 82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
  • 83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
  • 84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
  • 85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
  • 86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
  • 87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
  • 88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
  • 89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
  • 90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.

    Виды деления:

    1. Равновеликое бинарное поперечное деление , приводящее к образованию двух одинаковых дочерних клеток. При таком способе деления имеет место симметрия в отношении продольной и поперечной оси. При равновеликом бинарном делении материнская клетка, делясь, дает начало двум дочерним клеткам и сама, таким образом, исчезает.

    2. Неравновеликое бинарное деление, или почкование . При почковании на одном из полюсов материнской клетки образуется маленький вырост (почка), увеличивающийся в процессе роста. Постепенно почка достигает размеров материнской клетки, после чего отделяется от последней. Клеточная стенка почки полностью синтезируется заново. В процессе почкования симметрия наблюдается в отношении только продольной оси. При почковании материнская клетка дает начало дочерней клетке, и между ними можно в большинстве случаев обнаружить морфологические и физиологические различия: есть старая материнская клетка и новая дочерняя.

    3. Размножение путем множественного деления , характерное для одной группы одноклеточных цианобактерий, в результате образуются мелкие клетки, получивших название баеоцитов (греч. bae – маленькая, cyto – клетка), число которых у разных видов колеблется от 4 до 1000. Освобождение баеоцитов происходит путем разрыва материнской клеточной стенки. В основе множественного деления лежит принцип равновеликого бинарного деления. Отличие заключается в том, что в этом случае после бинарного деления не происходит роста образовавшихся дочерних клеток, а они снова подвергаются делению.

    23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.

    Формы обмена генетическим материалом у бактерий:

    1. по горизонтали

    * трансформация – перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чужеродной ДНК.

    А) Индуцированная (искусственно получаемая) трансформация происходит при добавлении к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре.

    Б) Спонтанная трансформация происходит в естественных условиях и проявляется в возникновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, выделяющейся клетками в окружающую среду вследствие их лизиса или в результате активного выделения ДНК жизнеспособными клетками-донорами.

    * сексдукция

    * трансфекция – вариант трансформации бактериальных клеток, лишенных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий (без клеточной стенки) вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактериальными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток, или воспроизводить вирионы, или самостоятельно реплицироваться.

    * конъюгация – процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Этот процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном (tra – от англ., transfer – перенос).

    Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление поверхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками. Донорные ворсинки представляют собой длинные (1-20 мкм) тонкие трубчатые структуры белковой природы с внутренним диаметром около 3 нм.

      установление контакта между донором и реципиентом

      протаскивание нити ДНК от донора к реципиенту

      достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке

      рекомбинация между переданной хромосомой (ее фрагментами) и хромосомой клетки-реципиента

      размножение мерозиготы

      образование клеток, несущих признаки донора и реципиента

    Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим примером конъюгативной плазмиды является половой фактор, или F-плазмида (от англ. fertility – плодовитость). F-плазмида может находиться как в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором Р~-клетка (клетка, лишенная F-плазмиды) превращается в Р+-клетку (клетку, содержащую F-плазмиду). F-плазмида может интегрироваться в определенные участки бактериальной хромосомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки.

    Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкается с рецептором клеточной мембраны клетки-реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, образуя агрегаты спаривания. Предполагают, что нить ДНК в процессе конъюгации протаскивается через канал донорной ворсинки. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, – полная хромосома. С помощью F-плазмид частота переноса генов между бактериями существенно возрастает.

    * трансдукция - перенос генетического материала от клетки-донора клетке-реципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую.

    А) Неспецифическая трансдукция - случайный перенос фрагментов ДНК от одной бактериальной клетки к другой.

    Б) Специфическая трансдукция осуществляется только умеренными фагами, способными включаться в строго определенные участки хромосомы бактериальной клетки и переносить определенные гены.

    Молекулярные механизмы изменчивости бактерий

    Бактерии в силу относительной простоты их организации и короткого срока жизни подвергаются изменчивости быстрее, чем многие другие организмы. В основе их изменчивости лежат мутации и генетические рекомбинации, особенно протекающие с участием транспонируемых элементов.

    *Мутации – изменения в генотипе, которые стабильно наследуются. Мутации могут быть спонтанными или индуцированными.

    а) Спонтанные мутации возникают без каких-либо специальных воздействий, они происходят в результате ошибок при репликации и репарации. Средняя частота спонтанных мутаций составляет около 1 106 (один мутант на 1 млн. клеток).

    б) Индуцированные мутации происходят с гораздо большей частотой, они возникают в результате воздействия различных мутагенов – физических и химических факторов, повреждающих ДНК: ионизирующая радиация, УФ облучение, различные аналоги оснований ДНК, алкилирующие соединения, акридины, антибиотики

    в) Точечные мутации могут быть обусловлены: заменой оснований, выпадением (делецией) основания, появлением дополнительного основания (вставки). Точечные мутации могут иметь три последствия:

    1) замена одного кодона на другой, а стало быть, одной аминокислоты на другую;

    2) сдвиг рамки считывания, что приведет к изменению целой серии последовательностей аминокислотных остатков;

    3)возникновение «бессмысленного» кодона, что приведет к прекращению трансляции в данной точке

    синтез белка может быть полностью заблокирован. Будет синтезироваться измененный белок

    Все это приведет либо к утрате какого-то фенотипического признака у мутанта, либо, реже, к появлению у него нового признака.

    Нарушение генома может быть следствием:

    *протяженных делеций

    *инверсии (поворот сегмента хромосомы на 180°)

    *транслокации (перемещение участка хромосомы из одной позиции в другую)

    Все это также будет приводить к изменению и нарушению различных функций клетки (организма).

    Большая роль в изменчивости бактерий и других организмов принадлежит так называемым транспонируемым генетическим элементам, то есть генетическим структурам, способным в интактной форме перемещаться внутри данного генома или переходить от одного генома к другому, например от плазмидного генома к бактериальному и наоборот. Различают три класса транспонируемых элементов: IS-элементы, транспозоны и эписомы.

    #Вставочные последовательности (от англ, insertion sequence), имеют обычно размеры, не превышающие 2 тыс. пар оснований, или 2 к.б. (килобаза – тысяча пар оснований). IS-элементы несут только один ген, кодирующий белок транспозазу, с помощью которой IS-элементы встраиваются в различные участки хромосомы. Их обозначают цифрами: IS1, IS2, IS3 и т. д.

    #Транспозоны представляют собой более крупные сегменты ДНК, фланкированные инвертированными IS-элементами. Способны встраиваться в различные участки хромосомы или переходить из одного генома в другой, т. е. ведут себя как IS-элементы. Помимо генов, обеспечивающих их перемещение, они содержат и другие гены, например гены лекарственной устойчивости. Транспозоны обнаружены в геномах плазмид, вирусов, прокариот и эукариот и их, как и IS-элементы, обозначают порядковым номером: Tп1, Тп2, ТпЗ и т. д.

    # К эписомам относятся еще более крупные и сложные саморегулирующиеся системы, содержащие IS-элементы и транспозоны и способные реплицироваться в любом из двух своих альтернативных состояний – автономном или интегрированном – в хромосому клетки-хозяина. К эписомам относят различные умеренные лизогенные фаги; они отличаются от всех других транспонируемых элементов наличием собственной белковой оболочки и более сложным циклом репродукции. Собственно эписомы – это вирусы, обладающие, подобно другим транспонируемым элементам, способностью в интактной форме переходить из одного генома в другой.

    Бактерии - прокариоты (безъядерные) простейшие формы организации живых организмов. Узнать о том, что собой представляют эти организмы, вы сможете из нашей статьи .

    Как размножаются бактерии: способы

    Способов, как размножаются бактерии, не так уж и много: простое деление, почкование, конъюгация (ее некоторые ученые считают половым процессом у бактерий). Остановимся подробно на каждом из них.

    Самый распространенный способ размножения у бактерий в естественной среде - равновеликое поперечное деление. Это означает, что материнская клетка после удвоения нити ДНК и всех органелл делится надвое, образуя две дочерние клетки, у которых генетический материал будет аналогичным материнскому. Таким образом, бактерия буквально клонирует сама себя. Процесс деления происходит путем формирования перетяжки или поперечной перегородки в экваториальной части клетки.

    Еще одним способом размножения, который используют бактерии в природе и человеческом организме - почкование, которое немного отличается от деления. Так, материнская клетка не делится «пополам», а «выращивает» на одном из своих полюсов дочернюю клетку (почку). Материнская клетка чаще всего может вырастить до 4-х дочерних, после чего стареет и погибает. Почкование, также как деление, дает генетических клонов материнской клетки.

    Половой процесс у бактерий

    Еще одним способом размножения бактерий, в котором присутствует простейший половой процесс, является конъюгация. Чаще к ней прибегают бактерии, живущие в организме человека или животных. У них, в отличие от эукариот (ядерных организмов), не формируются гаметы и не происходит слияния половых клеток (гамет).

    В ходе такого размножения две бактериальные клетки соприкасаются, образуют коньюгационный мостик и обмениваются генами, в результате чего образуются генетически новые клетки. Этот процесс также называется генетической рекомбинацией. Половым способом размножаются такие бактерии, как кишечные палочки (Escherichia coli) и некоторые другие грамотрицательные и грамположительные бактерии.


    Обычно деление бактериальных клеток описывается как "бинарное": после удвоения нуклеоиды, связанные с плазматической мембраной, расходятся за счет растяжения мембраны между нуклеоидами, а затем образуется перетяжка или септа, делящая клетку надвое. Этот тип деления приводит к очень точному распределению генетического материала, практически без ошибок (менее 0,03 % дефектных клеток). Напомним, что ядерный аппарат бактерий, нуклеоид, представляет собой циклическую гигантскую (1,6 мм) молекулу ДНК, образующую многочисленные петлевые домены в состоянии сверхспирализации, порядок укладки петлевых доменов не известен.

    Среднее время между делениями бактериальных клеток составляет 20-30 мин. А это период должен произойти целый ряд событий: репликация ДНК нуклеоида, сегрегация, отделение сестринских нуклеоидов, их дальнейшее расхождение, цитотомия за счет образования септы, делящей исходную клетку ровно пополам.

    Весь ряд этих процессов находится под интенсивным вниманием исследователей последних лет, в результате были получены важные и неожиданные наблюдения. Так оказалось, что в начале синтеза ДНК, который начинается с точки репликации (origin), обе растущие молекулы ДНК изначально остаются связанными с плазматической мембраной. Одновременно с синтезом ДНК происходит процесс снятия сверхспирализации как старых, так и реплицирующихся петлевых доменов за счет целого ряда ферментов (топоизомеразы, гиразы, лигазы и др), что приводит к физическому обособлению двух дочерних (или сестринских) хромосом-нуклеоидов, которые еще находятся в тесном контакте друг с другом. После такой сегрегации нуклеоидов происходит их расхождение от центра клетки, от места их бывшего расположения. Причем это расхождение очень точное: на четверть длины клетки в двух противоположных направлениях. В результате этого в клетке располагаются два новых нуклеоида. Каков механизм этого расхождения? Делались предположения (Деламатер, 1953), что деление бактериальных клеток аналогично митозу эукариот, однако данных в пользу этого предположения долгое время не появлялось.

    Новые сведения о механизмах деления бактериальных клеток были получены при изучении мутантов, в которых происходили нарушения клеточного деления.

    Было обнаружено, что в процессе расхождения нуклеоидов принимают участие несколько групп специальных белков. Один из них, белок Muk В, представляет собой гигантский гомодимер (мол.масса около 180 кДа, длина 60 нм), состоящий из центрального спирального участка, и концевых глобулярных участков, напоминающий по структуре нитевидные белки эукариот (цепь миозина II, кинезина). На N-конце Muk В связывается с ГТФ и АТФ, а на С-конце - с молекулой ДНК. Эти свойства Muk В дают основания считать его моторным белком, участвующим в расхождении нуклеоидов. Мутации этого белка приводят к нарушениям расхождения нуклеоидов: в мутантной популяции появляется большое количество безъядерных клеток.

    Кроме белка Muk В в расхождении нуклеоидов, по-видимому, участвуют пучки фибрилл, содержащих белок Caf A, который может связываться с тяжелыми цепями миозина, подобно актину.

    Образование перетяжки, или септы также в общих чертах напоминает цитотомию животных клеток. В данном случае в образовании септ принимают участие белки семейства Fts (фибриллярные термочувствительные). Это группа из нескольких белков, среди которых наиболее изучен белок FtsZ. Этот белок сходен у большинства бактерий, архибактерий, обнаружен в микоплазмах и хлоропластах. Это глобулярный белок, сходный по своей аминокислотной последовательности с тубулином. При взаимодействии с ГТФ in vitro он способен образовывать длинные нитчатые протофиламенты. В интерфазе FtsZ диффузно локализуется в цитоплазме, его количество очень велико (5-20 тыс. мономеров на клетку). Во время деления клетки весь этот белок локализуется в зоне септы, образуя сократимое кольцо, очень напоминающее акто-миозиновое кольцо при делении клеток животного происхождения. Мутации по этому белку приводят к прекращению деления клеток: возникают длинные клетки, содержащие множество нуклеоидов. Эти наблюдения показывают прямую зависимость деления бактериальных клеток от наличия Fts-белков.

    Относительно механизма образования септ существует несколько гипотез, постулирующих сокращение кольца в зоне септы, приводящее к разделению исходной клетки надвое. По одной из них протофиламенты должны скользить один относительно другого с помощью неизвестных еще моторных белков, по другой - сокращение диаметра септы может происходить за счет деполимеризации заякоренных на плазматической мембране FtsZ.

    Фазы размножения культуры бактерий в стационарных условиях

    Последняя фаза роста - стационарная фаза, которая вызвана истощением питательных веществ. Клетки сокращают свою метаболическую деятельность и потребляют несущественные клеточные белки. Стационарная фаза - это переход от быстрого роста к стрессовому состоянию, которое характеризуется увеличением экспрессии генов, которые принимают участие в ремонте ДНК и антиоксидантном метаболизме.