Как определить силу лоренца действующую на электрон. Лоренца сила

На заряд, движущийся в магнитном поле, действует сила, которую мы будем называть магнитной. Эта сила определяется зарядом q, скоростью его движения v и магнитной индукцией В в той точке, где находится заряд в рассматриваемый момент времени. Простейшее предположение заключается в том, что модуль силы F пропорционален каждой из трех величин q, v и В. Кроме того, можно ожидать, что F зависит от взаимной ориентации векторов v и В. Направление вектора F должно определяться направлениями векторов v и В.

Для того чтобы «сконструировать» вектор F из скаляра q и векторов v и В, перемножим v и В векторно и умножим затем получившийся результат на скаляр q. В итоге получим выражение

Опытным путем установлено, что сила F, действующая на заряд, движущийся в магнитном поле, определяется формулой

где k - коэффициент пропорциональности, зависящий от выбора единиц фигурирующих в формуле величин.

Необходимо иметь в виду, что рассуждения, приведшие нас к выражению (43.1), нельзя рассматривать как вывод формулы (43.2). Эти рассуждения не носят доказательной силы. Их назначение состоит в том, чтобы облегчить запоминание формулы (43.2). Справедливость же этой формулы может быть установлена только экспериментально.

Отметим, что соотношение (43.2) можно рассматривать как определение магнитной индукции В.

Единица магнитной индукции В - тесла - определяется так, чтобы коэффициент пропорциональности k в формуле (43.2) был равен единице.

Следовательно, в СИ эта формула имеет вид

Модуль магнитной силы равен

где а - угол между векторами v и В. Из (43.4) вытекает, что заряд, движущийся вдоль линий магнитного поля, не испытывает действия магнитной силы.

Направлена магнитная сила перпендикулярно к плоскости, в которой лежат векторы v и В. Если заряд q положителен, направление силы совпадает с направлением вектора . В случае отрицательного q направления векторов F и противоположны (рис. 43.1).

Поскольку магнитная сила всегда направлена перпендикулярно к скорости заряженной частицы, она работы над частицей не совершает. Следовательно, действуя на заряженную частицу постоянным магнитным полем, изменить ее энергию нельзя.

Если имеются одновременно электрическое и магнитное поля, сила, действующая на заряженную частицу, равна

Это выражение было получено X. Лоренцем путем обобщения экспериментальных данных и носит название силы Лоренца или лоренцевой силы.

Пусть заряд q движется со скоростью v параллельно прямому бесконечному проводу, по которому течет ток силы I (рис. 43.2). Согласно формулам (42.5) и (43.4) на заряд действует в этом случае магнитная сила, равная по модулю

где - расстояние от заряда до провода. В случае положительного заряда сила направлена к проводу, если направления тока и движения заряда одинаковы, и от провода, если направления тока и движения заряда противоположны (см. рис. 43.2). В случае отрицательного заряда направление силы изменяется на обратное.

Рассмотрим два одноименных точечных заряда движущихся вдоль параллельных прямых с одинаковой скоростью v, лного меньшей с (рис. 43.3). При электрическое поле практически не отличается от поля неподвижных зарядов (см. § 41). Потому величину электрической силы действующей на заряды, ожно считать равной

Согласно формулам (41.5) и (43.3) для магнитной силы (ействующей на заряды, получается выражение

(радиус-вектор перпендикулярен к ).

Из (43.9) следует, что магнитная сила слабее кулоновской на множитель, равный квадрату отношения скорости заряда к скорости света. Это объясняется тем, что магнитное взаимодействие между движущимися зарядами является релятивистским эффектом (см. § 45). Магнетизм исчез бы, если бы скорость света оказалась бесконечно большой.

Сила Лоренца определяет интенсивность воздействия электрического поля на точечный заряд. В одних случаях под ней подразумевается сила, с которой на заряд q, тот, что движется со скоростью V, действует магнитное поле, в иных имеется ввиду суммарное влияние электрического и магнитного полей.

Инструкция

1. Дабы определить направление силы Лоренца , было сделано мнемоническое правило левой руки. Его легко запомнить вследствие тому, что направление определяется с подмогой пальцев. Раскройте ладонь левой руки и выпрямите все пальцы. Огромный палец отогните под углом в 90 градусов по отношению ко каждым остальным пальцам, в одной плоскости с ладонью.

2. Представьте, что четыре пальца ладони, которые вы удерживаете совместно, указывают направление скорости движения заряда, если он правильный, либо противоположное скорости направление , если заряд негативный.

3. Вектор магнитной индукции, тот, что неизменно направлен перпендикулярно скорости, будет, таким образом, входить в ладонь. Сейчас посмотрите, куда указывает крупный палец – это и есть направление силы Лоренца .

4. Сила Лоренца может быть равна нулю и не иметь векторной составляющей. Это происходит в том случае, когда траектория заряженной частицы расположена параллельно силовым линиям магнитного поля. В таком случае частица имеет откровенную траекторию движения и непрерывную скорость. Сила Лоренца никак не влияет на движение частицы, так как в этом случае она вообще отсутствует.

5. В самом простом случае заряженная частица имеет траекторию движения, перпендикулярную силовым линиям магнитного поля. Тогда сила Лоренца создает центростремительное убыстрение, вынуждая заряженную частицу двигаться по окружности.

Абсолютно разумно и внятно, что на различных участках пути скорость движения тела неравномерно, где-то она стремительней, а где-то неторопливей. Для того, дабы измерять метаморфозы скорости тела за интервалы времени, было введено представление “ускорение “. Под ускорение м воспринимается метаморфоза скорости движения объекта тела за определенный интервал времени, в тот, что и случилось метаморфоза скорости.

Вам понадобится

  • Знать скорость перемещения объекта на различных участках в различные интервалы времени.

Инструкция

1. Определение убыстрения при равномерно-ускоренном движении.Такой тип движения обозначает, что объект за равные интервалы времени ускоряется на одно и то же значение. Пускай в один из моментов движения t1 скорость его движения была бы v1, а в момент t2 скорость бы составляла v2. Тогда ускорение объекта дозволено было бы рассчитать по формуле:a = (v2-v1)/(t2-t1)

2. Определение убыстрения объекта, если у него не равномерно-ускоренное движение.В данном случае вводится представление “среднее ускорение “. Это представление характеризует метаморфоза скорости объекта за все время его передвижения по заданному пути. Формулой это выражается так:a = (v2-v1)/t

Магнитная индукция является векторной величиной, а потому помимо безусловной величины характеризуется направлением . Дабы обнаружить его, надобно обнаружить полюса непрерывного магнита либо направление тока, тот, что порождает магнитное поле.

Вам понадобится

  • – эталонный магнит;
  • – источник тока;
  • – правый буравчик;
  • – прямой проводник;
  • – катушка, виток провода, соленоид.

Инструкция

1. магнитной индукции непрерывного магнита. Для этого обнаружьте его северный и южный полюс. Обыкновенно северный полюс магнита имеет синий цвет, а южный ¬– алый. Если полюса магнита неведомы, возьмите эталонный магнит и поднесите его северным полюсом к незнакомому. Тот конец, тот, что притянется к северному полюсу эталонного магнита, будет южным полюсом магнита, индукция поля которого измеряется. Линии магнитной индукции выходят из северного полюса и входят в южный полюс. Вектор в всякой точке линии идет в направлении линии по касательной.

2. Определите направление вектора магнитной индукции прямого проводника с током. Ток идет от позитивного полюса источника к негативному. Возьмите буравчик, тот, что вкручивается при вращении по часовой стрелке, он именуется правый. Начните вкручивать его в том направлении, куда идет ток у проводнике. Вращение рукояти покажет направление замкнутых круговых линий магнитной индукции. Вектор магнитной индукции в этом случае будет проходить по касательной к окружности.

3. Обнаружьте направление магнитного поля витка с током, катушки либо соленоида. Для этого подключите проводник к источнику тока. Возьмите правый буравчик и вращайте его рукоятку в направлении тока, идущего по виткам от правильного полюса источника тока к негативному. Поступательное движение штока буравчика покажет направление силовых линий магнитного поля. Скажем, если рукоятка буравчика вращается по направлению тока вопреки часовой стрелки (налево), то он, выкручиваясь, поступательно движется в сторону наблюдателя. Следственно силовые линии магнитного поля направлены тоже в сторону наблюдателя. Внутри витка, катушки либо соленоида линии магнитного поля прямые, по направлению и безусловной величине совпадают с вектором магнитной индукции.

Полезный совет
В качестве правого буравчика дозволено применять обыкновенный штопор для открывания бутылок.

Индукция появляется в проводнике при пересечении силовых линий поля, если его перемещать в магнитном поле. Индукция характеризуется направлением, которое дозволено определить по установленным правилам.

Вам понадобится

  • – проводник с током в магнитном поле;
  • – буравчик либо винт;
  • – соленоид с током в магнитном поле;

Инструкция

1. Дабы узнать направление индукции, следует воспользоваться одним из 2-х правил: правилом буравчика либо правилом правой руки. Первое применяется в основном для прямого провода, в котором течет ток. Правило правой руки используют для катушки либо соленоида, питаемого током.

2. Правило буравчика говорит:Если направление буравчика либо винта, движущегося поступательно, такое же как ток в проводе, то поворот ручки буравчика показывает направление индукции.

3. Дабы узнать направление индукции по правилу буравчика, определите полярность провода. Ток неизменно течет от правильного полюса к негативному. Расположите буравчик либо винт по провода с током: носик буравчика должен глядеть на негативный полюс, а рукоятка в сторону позитивного. Начните вращать буравчик либо винт как бы закручивая его, то есть по часовой стрелке. Возникающая индукция имеет вид замкнутых окружностей вокруг питаемого током провода. Направление индукции будет совпадать с направлением вращения рукоятки буравчика либо шляпки винта.

4. Правило правой руки говорит:Если взять катушку либо соленоид в ладонь правой руки, дабы четыре пальца лежали по направлению течения тока в витках, то крупной палец, отставленный в бок, укажет направление индукции.

5. Дабы определить направление индукции, применяя правило правой руки, нужно взять соленоид либо катушку с током так, дабы ладонь лежала на правильном полюсе, а четыре пальца руки по направлению тока в витках: мизинец ближе к плюсу, а указательный палец к минусу. Отставьте крупной палец в бок (как бы показывая жест «класс»). Направление большого пальца будет указывать на направление индукции.

Видео по теме

Обратите внимание!
Если направление тока в проводнике поменять, тогда буравчик следует выкручивать, то есть вращать его супротив часовой стрелки. Направление индукции также будет совпадать с направлением вращения рукоятки буравчика.

Полезный совет
Вы можете определить направление индукции мысленно представляя себе вращение буравчика либо винта. Не непременно иметь его под рукой.

Под линиями индукции понимают силовые линии магнитного поля. Для того дабы получить информацию об этом виде материи, неудовлетворительно знать безусловную величину индукции, необходимо знать и ее направление. Направление линий индукции дозволено обнаружить при помощи особых приборов либо пользуясь правилами.

Вам понадобится

  • – прямой и круговой проводник;
  • – источник непрерывного тока;
  • – непрерывный магнит.

Инструкция

1. Подключите к источнику непрерывного тока прямой проводник. Если по нему течет ток, он окружен магнитным полем, силовые линии которого представляют собой концентрические окружности. Определите направление силовых линий, воспользовавшись правилом правого буравчика. Правым буравчиком именуется винт, продвигающийся вперед при вращении в правую сторону (по часовой стрелке).

2. Определите направление тока в проводнике, рассматривая, что он протекает от правильного полюса источника к негативному. Шток винта расположите параллельно проводнику. Начинайте вращать его так, дабы шток начал двигаться в направлении тока. В этом случае направление вращения рукоятки покажет направление линий индукции магнитного поля.

3. Обнаружьте направление силовых линий индукции витка с током. Для этого используйте то же правило правого буравчика. Буравчик расположите таким образом, дабы рукоятка вращалась в направлении протекания тока. В этом случае движение штока буравчика покажет направление линий индукции. Скажем, если ток протекает в витке по часовой стрелке, то линии магнитной индукции будут перпендикулярны плоскости витка и будут уходить в его плоскость.

4. Если проводник двигается во внешнем однородном магнитном поле, определите его направление, пользуясь правилом левой руки. Для этого расположите левую руку так, дабы четыре пальца показывали направление тока, а отставленный огромный палец, направление движения проводника. Тогда линии индукции однородного магнитного поля будут входить в ладонь левой руки.

5. Обнаружьте направление линий магнитной индукции непрерывного магнита. Для этого определите, где расположены его северный и южный полюса. Линии магнитной индукции направлены от северного к южному полюсу вне магнита и от южного полюса к северному внутри непрерывного магнита.

Видео по теме

Для того дабы определить модуль точечных зарядов идентичной величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же надобно обнаружить модуль заряда отдельных точечных тел, вносите их в электрическое поле с знаменитой напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Вам понадобится

  • – крутильные весы;
  • – линейка;
  • – калькулятор;
  • – измеритель электростатического поля.

Инструкция

1. Если есть два идентичных по модулю заряда, измерьте силу их взаимодействия при помощи крутильных весов Кулона, которые единовременно являются эмоциональным динамометром. Позже того, как заряды придут в баланс, и проволока весов скомпенсирует силу электрического взаимодействия, на шкале весов зафиксируйте значение этой силы. Позже этого при помощи линейки, штангенциркуля, либо по особой шкале на весах обнаружьте расстояние между этими зарядами. Рассматривайте, что разноименные заряды притягиваются, а одноименные отталкиваются. Силу измеряйте в Ньютонах, а расстояние в метрах.

2. Рассчитайте значение модуля одного точечного заряда q. Для этого силу F, с которой взаимодействуют два заряда, поделите на показатель 9 10^9. Из полученного итога извлеките квадратный корень. Итог умножьте на расстояние между зарядами r, q=r ?(F/9 10^9). Заряд получите в Кулонах.

3. Если заряды неодинаковые, то один из них должен быть предварительно знаменит. Силу взаимодействия вестимого и неведомого заряда и расстояние между ними определите при помощи крутильных весов Кулона. Рассчитайте модуль неведомого заряда. Для этого силу взаимодействия зарядов F, поделите на произведение показателя 9 10^9 на модуль вестимого заряда q0. Из получившегося числа извлеките квадратный корень и умножьте итог на расстояние между зарядами r; q1=r ?(F/(9 10^9 q2)).

4. Определите модуль незнакомого точечного заряда, внеся его в электростатическое поле. Если его напряженность в данной точке предварительно неведома, внесите в нее датчик измерителя электростатического поля. Напряженность измеряйте в вольтах на метр. Внесите в точку с вестимой напряженностью заряд и с поддержкой эмоционального динамометра измерьте силу в Ньютонах, действующую на него. Определите модуль заряда, поделив значение силы F на напряженность электрического поля E; q=F/E.

Видео по теме

Обратите внимание!
Сила Лоренца была открыта в 1892 году Хендриком Лоренцом, физиком из Голландии. Сегодня она довольно зачастую используется в разных электроприборах, действие которых зависит от траектории движущихся электронов. Скажем, это электронно-лучевые трубки в телевизорах и мониторах. Всевозможные ускорители, разгоняющие заряженные частицы до больших скоростей, посредством силы Лоренца задают орбиты их движения.

Полезный совет
Частным случаем силы Лоренца является сила Ампера. Ее направление вычисляют по правилу левой руки.

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Вы сейчас здесь: Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

    РОССИЙСКОЙ ФЕДЕРАЦИИ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    «КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

    РЕФЕРАТ

    По предмету «Физика» Тема: «Применение силы Лоренца»

    Выполнил: Студент группы Т-10915 Логунова М.В.

    Преподаватель Воронцов Б.С.

    Курган 2016

    Введение 3

    1. Использование силы Лоренца 4

    1.1. Электронно-лучевые приборы 4

    1.2 Масс-спектрометрия 5

    1.3 МГД генератор 7

    1.4 Циклотрон 8

    Заключение 10

    Список использованной литературы 11

    Введение

    Сила Лоренца - сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует наточечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

    В Международной системе единиц (СИ) выражается как:

    F Л = q υ B sin α

    Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

    Макроскопическим проявлением силы Лоренца является сила Ампера.

    1. Использование силы Лоренца

    Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

    Основным применением силы Лоренца (точнее, её частного случая - силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках , в масс-спектрометрии и МГД-генераторах .

    Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

    1. 1. Электронно-лучевые приборы

    Электронно-лучевые приборы (ЭЛП) - класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП - преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический - например, в видимое телевизионное изображение.

    В класс электронно-лучевых приборов не включаются рентгеновские трубки, фотоэлементы, фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительные электронные лампы (лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

    Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

      Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

      Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

      Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф, считываемый сканирующим электронным лучом

    Рис. 1 Устройство ЭЛТ

    Общие принципы устройства.

    В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

    Сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

    где q - заряд частицы;

    V - скорость заряда;

    a - угол между вектором скорости заряда и вектором магнитной индукции .

    Направление силы Лоренца определяется по правилу левой руки:

    Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца:

    .

    Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).

    Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0 , и заряд в магнитном поле движетсяравномерно и прямолинейно.

    Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной:

    и создает центростремительное ускорение равное:

    В этом случае частица движется по окружности.


    .

    Согласно второму закону Ньютона : сила Лоренца равнв произведению массы частицы на центростремительное ускорение:

    тогда радиус окружности:

    а период обращения заряда в магнитном поле:

    Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Если внести проводник с током в магнитное поле (фиг.96,а), то мы увидим, что в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление магнитных линий и они, стремясь сократиться, будут выталкивать проводник вниз (фиг. 96, б).

    Направление силы, действующей на проводник с током в магнитном поле, можно определить по «правилу левой руки». Если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы. Сила Ампера , действующая на элемент длины проводника, зависит: от величины магнитной индукции В, величины тока в проводнике I, от элемента длины проводника и от синуса угла а между направлением элемента длины проводника и направлением магнитного поля.


    Эта зависимость может быть выражена формулой:

    Для прямолинейного проводника конечной длины, помещенного перпендикулярно к направлению равномерного магнитного поля, сила, действующая на проводник, будет равна:

    Из последней формулы определим размерность магнитной индукции.

    Так как размерность силы:

    т. е. размерность индукции такая же, какая была получена нами из закона Био и Савара.

    Тесла (единица магнитной индукции)

    Тесла, единица магнитной индукции Международной системы единиц, равная магнитной индукции, при которой магнитный поток сквозь поперечное сечение площадью 1 м 2 равен 1 веберу. Названа по имени Н. Тесла . Обозначения: русское тл, международное Т. 1 тл = 104 гс (гаусс ).

    Магни?тный моме?нт , магни?тный дипо?льный моме?нт — основная величина, характеризующая магнитные свойства вещества. Магнитный момент измеряется в А⋅м 2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10 -3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора . В случае плоского контура с электрическим током магнитный момент вычисляется как

    где — сила тока в контуре, — площадь контура, — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

    Для произвольного замкнутого контура магнитный момент находится из:

    ,

    где — радиус-вектор, проведенный из начала координат до элемента длины контура

    В общем случае произвольного распределения токов в среде:

    ,

    где — плотность тока в элементе объёма .

    Итак, на контур с током в магнитном поле действует вращающий момент. Контур ориентируется в данной точке поля только одним способом. Примем положительное направление нормали за направление магнитного поля в данной точке. Вращающий момент прямо пропорционален величине тока I , площади контура S и синусу угла между направлением магнитного поля и нормали .

    здесь М - вращающий момент , или момент силы , - магнитный момент контура (аналогично - электрический момент диполя).

    В неоднородном поле () формула справедлива, если размер контура достаточно мал (тогда в пределах контура поле можно считать приближенно однородным). Следовательно, контур с током по-прежнему стремится развернуться так, чтобы его магнитный момент был направлен вдоль линий вектора .

    Но, кроме того, на контур действует результирующая сила (в случае однородного поля и . Эта сила действует на контур с током или на постоянный магнит с моментом и втягивает их в область более сильного магнитного поля.
    Работа по перемещению контура с током в магнитном поле.

    Нетрудно доказать, что работа по перемещению контура с током в магнитном поле равна , где и - магнитные потоки через площадь контура в конечном и начальном положениях. Эта формула справедлива, если ток в контуре постоянен , т.е. при перемещении контура не учитывается явление электромагнитной индукции.

    Формула справедлива и для больших контуров в сильно неоднородном магнитном поле (при условии I= const).

    Наконец, если контур с током не смещать, а изменять магнитное поле, т.е. изменять магнитный поток через поверхность, охватываемую контуром, от значения до то для этого надо совершить ту же работу . Эта работа называется работой изменения магнитного потока, связанного с контуром. Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, которая равна

    где B n =Вcosα - проекция вектора В на направление нормали к площадке dS (α — угол между векторами n и В ), dS = dSn — вектор, у которого модуль равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosα (задается выбором положительного направления нормали n ). Поток вектора В обычно связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру нами задавалось: оно связывается с током правилом правого винта. Значит, магнитный поток, который создается контуром, через поверхность, ограниченную им самим, всегда положителен.

    Поток вектора магнитной индукции Ф B через произвольную заданную поверхность S равен

    (2)

    Для однородного поля и плоской поверхности, которая расположена перпендикулярно вектору В , B n =B=const и

    Из этой формулы задается единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, который проходит сквозь плоскую поверхность площадью 1 м 2 , который расположен перпендикулярно однородному магнитному полю и индукция которого равна 1 Тл (1 Вб=1 Тл.м 2).

    Теорема Гаусса для поля В : поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:

    (3)

    Эта теорема является отражением факта, что магнитные заряды отсутствуют , вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

    Следовательно, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные формулы.

    В качестве примера найдем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью μ, равна

    Магнитный поток сквозь один виток соленоида площадью S равен

    а полный магнитный поток, который сцеплен со всеми витками соленоида и называемый потокосцеплением ,