Аналитическая химия. Методы разделения, концентрирования и устранения мешающих анализу компонентов К методам концентрирования относят

Общие сведения о разделении и концентрировании

Разделение - это операция, позволяющая отделить компоненты пробы друг от друга.

Его используют, если одни компоненты пробы мешают определению или обнаружению других, т. е. когда метод анализа недостаточно селективен и надо избежать наложения аналитических сигналов. При этом обычно концентрации разделяемых веществ близки.

Концентрирование - это операция, позволяющая увеличить концентрацию микрокомпонента относительно основных компонентов пробы (матрицы).

Его используют, если концентрация микрокомпонента меньше предела обнаружения С min, т. е. когда метод анализа недостаточно чувствителен. При этом концентрации компонентов сильно различаются. Часто концентрирование совмещается с разделением.

Виды концентрирования.

1. Абсолютное: микрокомпонент переводят из большого объёма или большой массы пробы (Vпр или mпр) в меньший объём или меньшую массу концентрата (Vконц или mконц). В результате концентрация микрокомпонента увеличивается в n раз:

где n - степень концентрирования .

Чем меньше объём концентрата, тем больше степень концентрирования. Например , 50 мг катионита поглотили германий из 20 л водопроводной воды, затем германий десорбировали 5 мл кислоты. Следовательно, степень концентрирования германия составила:

2. Относительное (обогащение): микрокомпонент отделяется от макрокомпонента так, что отношение их концентраций увеличивается. Например, в исходной пробе отношение концентраций микро- и макрокомпонентов составляло 1: 1000, а после обогащения - 1: 10. Обычно это достигается путём частичного удаления матрицы.

Разделение и концентрирование имеют много общего, для этих целей используются одни и те же методы. Они очень разнообразны. Далее будут рассмотрены методы разделения и концентрирования, имеющие наибольшее значение в аналитической химии.

Классификация методов разделения и концентрирования

Существует множество классификаций методов разделения и концентрирования, основанных на разных признаках. Рассмотрим важнейшие из них.

1. Классификация по природе процесса дана на рис.62.


Рис. 62.

Химические методы разделения и концентрирования основаны на протекании химической реакции, которая сопровождается осаждением продукта, выделением газа. Например , в органическом анализе основным методом концентрирования является отгонка: при термическом разложении матрица отгоняется в виде СО 2 , Н 2 О, N 2 , а в оставшейся золе можно определять металлы.

Физико-химические методы разделения и концентрирования чаще всего основаны на избирательном распределении вещества между двумя фазами. Например , в нефтехимической промышленности наибольшее значение имеет хроматография.

Физические методы разделения и концентрирования чаще всего основаны на изменении агрегатного состояния вещества.

2. Классификация по физической природе двух фаз . Распределение вещества может осуществляться между фазами, которые находятся в одинаковом или разном агрегатном состоянии: газообразном (Г), жидком (Ж), твёрдом (Т). В соответствии с этим различают следующие методы (рис.63).


Рис. 63.

В аналитической химии наибольшее значение нашли методы разделения и концентрирования, которые основаны на распределении вещества между жидкой и твёрдой фазой.

  • 3. Классификация по количеству элементарных актов (ступеней).
  • § Одноступенчатые методы - основаны на однократном распределении вещества между двумя фазами. Разделение проходит в статических условиях.
  • § Многоступенчатые методы - основаны на многократном распределении вещества между двумя фазами. Различают две группы многоступенчатых методов:
  • – с повторением процесса однократного распределения (например , повторная экстракция). Разделение проходит в статических условиях;
  • – методы, основанные на движении одной фазы относительно другой (например , хроматография). Разделение проходит в динамических условиях
  • 3. Классификация по виду равновесия (рис.64).

Рис. 64.

Термодинамические методы разделения основаны на различии в поведении веществ в равновесном состоянии. Они имеют наибольшее значение в аналитической химии.

Кинетические методы разделения основаны на различии в поведении веществ во время процесса, ведущего к равновесному состоянию. Например , в биохимических исследованиях наибольшее значение имеет электрофорез. Остальные кинетические методы используются для разделения частиц коллоидных растворов и растворов высокомолекулярных соединений. В аналитической химии эти методы применяются реже.

Хроматографические методы основаны и на термодинамическом, и на кинетическом равновесии. Они имеют огромное значение в аналитической химии, поскольку позволяют провести разделение и одновременно качественный и количественный анализ многокомпонентных смесей.

Экстракция как метод разделения и концентрирования

Экстракция - это метод разделения и концентрирования, основанный на распределении вещества между двумя несмешивающимися жидкими фазами (чаще всего - водной и органической).

С целью экстракционного разделения создают такие условия, чтобы один компонент полностью перешёл в органическую фазу, а другой - остался в водной. Затем делят фазы с помощью делительной воронки.

С целью абсолютного концентрирования вещество переводят из большего объёма водного раствора в меньший объём органической фазы, в результате чего концентрация вещества в органическом экстракте увеличивается.

С целью относительного концентрирования создают такие условия, чтобы микрокомпонент перешёл в органическую фазу, а бульшая часть макрокомпонента осталась бы в водной. В результате в органическом экстракте отношение концентраций микро- и макрокомпонента увеличивается в пользу микрокомпонента.

Достоинства экстракции:

  • § высокая избирательность;
  • § простота выполнения (нужна только делительная воронка);
  • § малая трудоёмкость;
  • § быстрота (3-5 мин);
  • § экстракция очень хорошо сочетается с методами последующего определения, в результате чего возник ряд важных гибридных методов (экстракционно-фотометрический, экстракционно-спект-ральный и др.).

Соосаждение как метод разделения и концентрирования

Соосаждение - это захват микрокомпонента осадком-коллектором во время его образования, причём микрокомпонент переходит в осадок из ненасыщенного раствора (ПС < ПР).

В качестве коллекторов используют неорганические и органические малорастворимые соединения с развитой поверхностью. Разделение фаз проводят путём фильтрования.

Соосаждение применяют с целью:

  • § концентрирования примесей как очень эффективного и одного из наиболее важных методов, который позволяет повысить концентрацию в 10-20 тыс. раз;
  • § отделения примесей (реже).

Сорбция как метод разделения и концентрирования

Сорбция - это поглощение газов или растворённых веществ твёрдыми или жидкими сорбентами.

В качестве сорбентов используют активные угли, Al2O3, кремнезём, цеолиты, целлюлозу, природные и синтетические сорбенты с ионогенными и хелатообразующими группами.

Поглощение веществ может происходить на поверхности фазы (а д сорбция ) или в объёме фазы (а б сорбция ). В аналитической химии чаще всего применяют адсорбцию с целью:

  • § разделения веществ, если создать условия для селективного поглощения;
  • § концентрирования (реже).

Кроме того, сорбция в динамических условиях положена в основу важнейшего метода разделения и анализа - хроматографии.

Маскирование.

Маскирование - это торможение или полное подавление химической реакции в присутствии веществ, способных изменить ее направление или скорость. При этом не происходит образование новой фазы. Различают два вида маскирование - термодинамическое (равновесное) и кинетическое (неравновесное). При термодинамическом маскировании создаются условия, при которых условная константа реакции понижается до такой степени, что реакция идет незначительно. Концентрация маскируемого компонента становится недостаточной для того, что бы надежно зафиксировать аналитический сигнал. Кинетическое маскирование основано на увеличении разницы между скоростями реакции маскируемого и определяемого веществ с одним и тем же реагентом.

Разделение и концентрирование.

Необходимость разделения и концентрирования может быть обусловлена следующими факторами: проба содержит компоненты, мешающие определению; концентрация определяемого компонента ниже предела обнаружения метода; определяемые компоненты неравномерно распределены в пробе; отсутствуют стандартные образцы для градуировки приборов; проба высокотоксична, радиоактивна и дорога.

Разделение - это операция (процесс), в результате которой компоненты, составляющие исходную смесь, отделяются один от другого.

Концентрирование - это операция (процесс), в результате которой повышается отношение концентрации или количества микрокомпонентов к концентрации или количеству макрокомпонента.

Осаждение и соосаждение.

Осаждение, как правило, применяют для разделения неорганических веществ. Осаждение микрокомпонентов органическими реагентами, и особенно их соосаждение, обеспечивают высокий коэффициент концентрирования. Эти методы используют в комбинации с такими методами определения, которые рассчитаны на получение аналитического сигнала от твердых образцов.

Разделение путем осаждения основано на различной растворимости соединений, преимущественно в водных растворах.

Соосаждение - это распределение микрокомпонента между раствором и осадком.

Экстракция.

Экстракция - это физико-химический процесс распределения вещества между двумя фазами, чаще всего между двумя несмешивающимися жидкостями. Так же это процесс массопереноса с химическими реакциями.

Экстракционные методы пригодны для концентрирования, извлечения микрокомпонентов или макрокомпонентов, индивидуального и группового выделения компонентов при анализе разнообразных промышленных и природных объектов. Метод прост и быстр в выполнении, обеспечивает высокую эффективность разделения и концентрирования и совместим с разными методами определения. Экстракция позволяет изучать состояние веществ в растворе при различных условиях, определять физико-химические характеристики.

Сорбцию хорошо используют для разделения и концентрирования веществ. Сорбционные методы обычно обеспечивают хорошую селективность разделения, высокие значения коэффициентов концентрирования.

Сорбция - процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе (сорбентами).

Электролитическое выделение и цементация.

Наиболее распространен метод электоровыделения, при котором отделяемое или концентрированное вещество выделяют на твердых электродах в элементарном состоянии или в виде какого-то соединения. Электролитическое выделение (электролиз) основано на осаждении вещества электрическим током при контролируемом потенциале. Наиболее распространен вариант катодного осаждения металлов. Материалом электродов может служить углерод, платина, серебро, медь вольфрам и т.д.

Электрофорез основан на различиях в скоростях движения частиц разного заряда, формы и размера в электрическом поле. Скорость движения зависит от заряда, напряженности поля и радиуса частиц. Различают два варианта электрофореза: фронтальный (простой) и зонный (на носителе). В первом случае небольшой объем раствора, содержащего разделяемые компоненты, помещают в трубку с раствором электролита. Во втором случае передвижение происходит в стабилизирующей среде, которая удерживает частицы на местах после отключения электрического поля.

Метод цементации заключается в восстановлении компонентов (обычно малых количеств) на металлах с достаточно отрицательными потенциалами или альмагамах электроотрицательных металлов. При цементации происходит одновременно два процесса: катодный (выделение компонента) и анодный (растворение цементирующего металла).

Методы испарения.

Методы дистилляции основаны на разной летучести веществ. Вещество переходит из жидкого состояния в газообразное, а затем конденсируется, образуя снова жидкую или иногда твердую фазу.

Простая отгонка (выпаривание) - одноступенчатый процесс разделения и концентрирования. При выпаривании удаляются вещества, которые находятся в форме готовых летучих соединений. Это могут быть макрокомпоненты и микрокомпоненты, отгонку последних применяют реже.

Возгонка (сублимация) - перевод вещества из твердого состояния в газообразное и последующее осаждение его в твердой форме (минуя жидкую фазу). К разделению возгонкой прибегают, как правило, если разделяемые компоненты трудно плавятся или трудно растворимы.

Управляемая кристаллизация.

При охлаждении раствора, расплава или газа происходит образование зародышей твердой фазы - кристаллизация, которая может быть неуправляемой (объемной) и управляемой. При неуправляемой кристаллизации кристаллы возникают самопроизвольно во всем объеме. При управляемой кристаллизации процесс задается внешними условиями (температура, направление движения фаз и т.п.).

Различают два вида управляемой кристаллизации: направленную кристаллизацию (в заданном направлении) и зонную плавку (перемещение зоны жидкости в твердом теле в определенном направлении).

При направленной кристаллизации возникает одна граница раздела между твердым телом и жидкостью - фронт кристаллизации. В зонной плавке две границы: фронт кристаллизации и фронт плавления.

1) Физические методы : упаривание (выпаривание), перегонка

Упаривание – неполное испарение растворителя (уменьшение объёма – концентрирование)

Выпаривание – испарение растворителя досуха (с последующим растворением сухого остатка в малом объёме)

Перегонка – отделение летучих компонентов

2) Химические методы : осаждение, соосаждение

Осаждение – разделение (систематический ход анализа); концентрирование (осаждение определяемого иона из большого объёма анализируемого раствора и растворение осадка в малом объёме)

Соосаждение – одновременное осаждение из одного и того же раствора растворимого в данных условиях микрокомпонента с выпадающим в осадок макрокомпонентом.

Причины соосаждения : 1) поверхностная адсорбция – соосаждаемое вещество адсорбируется на поверхности коллектора и осаждается с ним; 2) окклюзия – механический захват части маточного раствора с соосаждаемым ионом внутрь осадка коллектора; 3) инклюзия – образование смешанных кристаллов

Соосаждение используют для концентрирования веществ, находящихся в анализируемом растворе в микроколичествах, с последующим их определением в концентрате.

3) Физико-химические методы : экстракция, хроматография

Экстракция – метод извлечения вещества из раствора или сухой смеси с помощью подходящего растворителя. Для извлечения из раствора применяются растворители, не смешивающиеся с этим раствором, но в которых вещество растворяется лучше, чем в первом растворителе. Экстракция применяется в химической, нефтеперерабатывающей, пищевой, металлургической, фармацевтической отраслях.

Хроматография – динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами – неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза).

88. Методы качественного химического анализа

Микрокристаллоскопический анализ

Для обнаружения катионов и анионов могут быть использованы реакции, в результате которых образуются соединения с характерной формой кристаллов. На форму и скорость образования кристаллов влияют условия проведения реакции. Существенную роль в микрокристаллоскопических реакциях играет быстрое испарение растворителя, что приводит к концентрированию раствора и, следовательно, увеличению чувствительности определения иона.

Пирохимический анализ



При нагревании веществ в пламени горелки можно наблюдать различные характерные явления: испарение, плавление, изменение цвета, окрашивание пламени. Все эти явления используют в качественном анализе для предварительных испытаний вещества. Иногда с помощью пирохимических реакций удается повысить избирательность и чувствительность определения . Пирохимические реакции применяют для анализа минералов в полевых условиях.

Окрашивание пламени

При введении в пламя раствора соли металла происходит ряд сложных процессов: испарение, образование твердых аэрозолей, диссоциация, ионизация, взаимодействие с кислородом, возбуждение атомов, ионов и молекул. Конечным итогом этих процессов является аналитически используемый эффект – свечение пламени .

89. Методы определения количественного состава соединений


90. Основные физические величины

Физическая величина – физическое свойство материального объекта, физического явления, процесса, которое может быть охарактеризовано количественно.

Значение физической величины – число, характеризующее эту физическую величину, с указанием единицы измерения, на основе которой они были получены.

Система физических единиц – совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. СИ (Система Интернациональная) – международная система единиц,. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике.



В системе СИ каждая основная величина имеет соответствующую единицу: единица длины – метр (м); единица времени – секунда (с); единица массы – килограмм (кг); единица силы электрического тока – ампер (А); единица температуры – кельвин (К); единица кол-ва вещества – моль (моль); единица силы света – кандела (кд)

При практическом использовании единицы Международной системы нередко оказываются либо слишком большими, либо слишком малыми, поэтому с помощью особых приставок могут быть образованы десятичные кратные и дольные единицы.

дека да 10 1 деци д 10 -1
гекто г 10 2 санти с 10 -2
кило к 10 3 милли м 10 -3
мега М 10 6 микро мк 10 -6
гига Г 10 9 нано н 10 -9
тера Т 10 12 пико п 10 -12
пета П 10 15 фемто Ф 10 -15
экса Э 10 18 атто а 10 -18

91. Понятие физических методов и их классификация

92. Использование физических методов при экспертном исследовании

93. Понятие физической величины «плотность». Методы определения плотности

Плотность – физическая величина, равная отношению массы тела к его объёму (ρ = m / V ). Исходя из определения плотности, её размерность кг/м 3 в системе СИ.

Плотность вещества зависит от массы атомов, из которых оно состоит, и от плотности упаковки атомов и молекул в веществе. Чем больше масса атомов и чем они ближе расположены друг к другу, тем больше плотность.

Плотномеры служат для измерения плотности жидкостей, газов и твердых веществ.

Плотность неоднородного вещества – соотношение массы и объема, когда последний стягивается к точке, в которой измеряется плотность. Отношение плотностей двух веществ при определенных стандартных физических условиях называют относительной плотностью; для жидких и твердых веществ ее измеряют при температуре t , как правило, по отношению к плотности дистиллированной воды при 4°C, для газов – по отношению к плотности сухого воздуха или водорода при нормальных условиях (T = 273К, p = 1,01 10 5 Па).

Для сыпучих и пористых твердых веществ различают плотности истинную (масса единицы объема плотного материала, не содержащего пор), кажущуюся (масса единицы объема пористого материала из зерен или гранул) и насыпную (масса единицы объема слоя материала).

94. Понятие физической величины «масса». Методы определения массы

Масса – скалярная физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Различают массу инертную и массу гравитационную.

Понятие масса было введено в механику И. Ньютоном . В классической механике Ньютона масса входит в определение импульса (кол-ва движения) тела: импульс р пропорционален скорости движения тела V , p=mv (1). Коэффициент пропорциональности – постоянная для данного тела величина m – и есть масса тела. Эквивалентное определение массы получается из уравнения движения классической механики F=ma (2). Здесь масса – коэффициент пропорциональности между действующей на тело силой F и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) масса называется инерциальной (инертной) массой ; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше масса тела, тем меньшее ускорение оно приобретает, т.е. тем медленнее меняется состояние его движения.

В теории гравитации Ньютона масса выступает как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона: F = G* (m 1 *m 2 / R 2) - (3), где R – расстояние между телами, G – универсальная гравитационная постоянная, a m 1 и m 2 – массы притягивающихся тел.

Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4). Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела .

Весы – прибор для определения массы тел (взвешивания) по действующему на них весу, приближённо считая его равным силе тяжести. Рассмотрим в качестве примера измерение массы тела, которую мы измеряем с помощью обыкновенных равноплечих весов. Под действием земного притяжения создаются силы. Масса тела вместе с этими силами давит на одну чашку, а масса гирь - на другую. Подбирая гири, мы добиваемся равновесия, т.е. равенство этих сил. Это дает нам право сказать, что масса взвешиваемого тела равна массе гирь, принимая, что сила земного притяжения на расстоянии между чашками остается одной и той же. Как видим, для измерения массы нам пришлось преобразовать массы тела и гирь в силы, а для сравнения сил между собой преобразовать их действие в механическое перемещение рычагов весов.

Необходимость разделения и концентрирования как методов пробоподготовки может быть обусловлена следующими факторами:

    концентрация определяемого компонента ниже предела обнаружения метода;

    проба содержит компоненты, мешающие определению компонента;

    определяемые компоненты неравномерно распределены в пробе;

    отсутствуют стандартные образцы для градуировки приборов;

    проба высокотоксична.

При разделении смеси вещества отделяют друг от друга. При концентрировании вещества, присутствующие в малом количестве, либо собираются в меньшем объеме (абсолютное концентрирование), либо отделяются от макрокомпонента таким образом, что отношение концентрации микрокомпонента к макрокомпоненту повышается (относительное концентрирование).

Методы для решения задач разделения и концентрирования одни и те же, но в каждом конкретном случае возможны модификации, связанные с относительными количествами веществ, способом получения и измерения аналитического сигнала.

Для решения задач разделения и концентрирования используют почти все химические и физические свойства веществ: растворимость (осаждение, соосаждение), распределение между несмешивающимися фазами (экстракция, хроматография), летучесть (дистиляция), скорость движения в электрическом поле (электрофорез), электродный потенциал и др.

Концентрирование и разделение веществ методом осаждения основано на различной растворимости соединений преимущественно в водных растворах. В основном метод осаждения используют при разделении веществ. Изменяя кислотность среды, комбинируя осадители, можно добиться разделения еще большего числа элементов.

При концентрировании методом осаждения обычно выделяется матрица, а не микрокомпонент. Концентрирование микрокомпонента осаждением используют редко, содержание его столь мало, что твердая фаза не образуется. Для этой цели следует применять метод соосаждения микрокомпонента. Соосаждение – это распределение микрокомпонента между раствором (жидкая фаза) и осадком (твердая фаза).

Микрокомпонент соосаждается на коллекторе . Коллектором называют малорастворимое неорганическое и органическое соединение, которое должны полностью захватывать нужные и не захватывать мешающие микрокомпоненты и компоненты матрицы. Эффективность органических коллекторов настолько высока, что селективное выделение микрокомпонента осуществляется, когда его отношение к макрокомпоненту составляет 1:10 15 . Причина такой высокой эффективности обычно заключается в связывании микрокомпонента в комплекс с коллектором.

В методах разделения и концентрирования также используют адсорбционные процессы. Адсорбцией называется процесс поглощения газов, паров и растворенных веществ твердыми поглотителями (адсорбентами). Различают физическую адсорбцию (взаимодействие молекул сорбирующихся веществ с поверхностью сорбента в результате действия электростатических сил) и хемосорбцию (возникновение между сорбирующимся соединением и поверхностью сорбента прочной химической связи). В отличие от физической адсорбции хемосорбция обратима не полностью. При адсорбции неорганических и органических соединений используют природные (активные угли, кремнеземы, целлюлоза) и синтетические (ионообменные и хелатообразующие синтетические смолы) адсорбенты.

На разнице в распределении вещества между двумя несмешивающимися фазами основаны методы хроматографии и экстракции .

Методом экстракции можно разделить вещества в зависимости от их распределения в двух несмешивающихся фазах. Разделяемые вещества имеют различную степень сродства к этим двум фазам (обычно водным и органическим растворителям) и распределяются в зависимости от этой степени сродства в двух фазах. При экстракции одновременно протекают процессы:

    образование экстрагируемых соединений;

    распределение экстрагируемых соединений между органической и водной фазами;

    реакции в органической фазе (диссоциация, ассоциация, полимеризация).

Обычно используют следующую технику разделения веществ методом экстракции: вводят в делительную воронку водный раствор, содержащий экстрагируемое соединение и органический растворитель, не смешивающийся с водной фазой. Затем воронку энергично встряхивают для обеспечения хорошего контакта фаз. После встряхивания фазы разделяют.

По способам осуществления экстракция делится на периодическую (экстракция вещества из водной фазы отдельными порциями свежего экстрагента), непрерывную (непрерывное относительное перемещение двух фаз, одна из фаз, обычно водная, остается неподвижной), противоточную (органическая фаза переносится последовательно через серию экстракционных трубок и в каждой из них контактирует со свежими порциями нижней водной фазы до установления равновесия, что является наиболее эффективным способом).

Делительные воронки для периодической экстракции и приборы для непрерывной экстракции представлен на рис. 3.3.

Рис. 3.3. Делительные воронки (а ) и приборы (б, в ) для непрерывной экстракции (плотность экстрагента ниже (б ) и выше (в ) плотности воды):

1  холодильник; 2  экстрагируемая жидкость; 3  трубка возврата экстрагента; 4  резервуар экстрагента; 5  воронка для диспергирования растворителя; 6  пористый стеклянный диск

Наиболее широко экстракцию используют при разделении смесей элементов, для чего обычно применяют избирательные экстрагенты. Например, серосодержащие экстрагенты (дитизон, дитиокарбаминаты) извлекают элементы, проявляющие сродство к атомам серы (Cu, Ni, Co, Hg, Pb и др.) и не экстрагируют магний, алюминий, скандий и ряд других элементов, не взаимодействующих с серосодержащими реагентами. Для концентрирования микрокомпонентов обычно применяют хелатообразующие экстракционные реагенты (дитизон, 8-оксихинолин). При этом обычно извлекают несколько микроэлементов (групповое концентрирование). Для индивидуального концентрирования селективность извлечения достигается изменением условий экстракции (РН, введение маскирующих веществ). Обычно микрокомпоненты извлекают в органическую фазу, объем которой в несколько раз меньше объема водной фазы. Возможен и другой вариант – извлечение матрицы и получение концентрата микрокомпонентов в водной фазе.

Хроматография также является методом разделения веществ, основанным на распределении компонентов между двумя фазами. Но одна из фаз является неподвижной (твердое вещество или пленка жидкости на твердом носителе), а другая – подвижной (жидкость или газ), протекающей через неподвижную фазу. Обычно неподвижную фазу помещают в стеклянную или металлическую трубку, называемую колонкой.

В зависимости от силы взаимодействия (обычно за счет сил адсорбции), разделяемых компонентов с поверхностью неподвижной фазы компоненты перемещаются вдоль колонки с разной скоростью. Одни компоненты остаются в верхнем слое неподвижной фазы, другие, с меньшей степенью взаимодействия с неподвижной фазой, оказываются в нижней части колонки, некоторые покидают колонку вместе с подвижной фазой. В результате компоненты разделяются. Возможности хроматографии многократно больше, чем возможности других методов, основанных на распределении компонентов между фазами, и во многом превосходят методы разделения веществ, основанных на других вышеприведенных принципах.

Хроматография  это гибридный аналитический метод, в котором хроматографический процесс сочетает разделение и измерение. Метод позволяет разделять многокомпонентную смесь, идентифицировать компоненты и определять ее количественный состав. Это динамический метод, обеспечивающий многократность актов адсорбции – десорбции разделяемых компонентов, так как разделение происходит в потоке подвижной фазы.

Методы хроматографии разделяют по агрегатному состоянию фаз (газожидкостная, газотвердофазная, жидкостно-жидкостная, жидкостно-твердофазная и жидкостно-гелевая), по механизму взаимодействия (распределительная, ионообменная, адсорбционная и др.), по способу получения хроматограмм (элюентная – непрерывное пропускание подвижной фазы с малой сорбируемостью (элюент), вытеснительная – непрерывное пропускание подвижной фазы с большей сорбируемостью, чем у разделяемых веществ (вытеснитель), фронтальная – непрерывное введение раствора разделяемых веществ (в чистом виде можно выделить лишь одно вещество)).

Хроматографическое разделение осуществляется в приборах – хроматографах (блок-схема которого на рис. 4.4). Количество вещества, выходящего из колонки, регистрируют с помощью детектора, а самописец записывает на диаграммной ленте сигналы детектора – хроматограмму, которая в современных хроматографах обрабатывается ЭВМ.

Получающиеся хроматограммы представлены на рис.4.5 имеют форму кривой с пиками, где t R – время удерживания, h - высота пика, - ширина пика. Хроматограммы позволяют при их расшифровке определять качественный и количественный состав разделяемых компонентов смеси. Положение хроматографического пика на хроматограмме (удерживаемый объем, время удерживания) характеризует природу вещества, а площадь, ограниченная этой кривой и нулевой линией детектора (хроматографический пик), пропорциональна количеству данного вещества, прошедшего через детектор.

Рис. 3.4. Блок-схема хроматографа: 1  система подачи подвижной фазы (баллон с газом, насос для жидкой подвижной фазы); 2  дозатор; 3  колонка; 4  детектор; 5  регистратор (самописец, интегратор, ЭВМ); 6  микропроцессор, ЭВМ

Для разделения и концентрирования веществ также используют методы испарения (дистилляция , отгонка , возгонка ). Методы дистилляции основаны на разной летучести веществ. При дистилляции вещество переходит из жидкого состояния в газообразное, а затем конденсируется, образуя вновь жидкую или иногда твердую фазу. При отгонке (выпаривании) удаляются вещества, которые легко образуют летучие соединения. Это могут быть макрокомпоненты (отгонка матрицы) и микрокомпоненты, что используется реже. Отгонка матрицы сопровождается, как правило, потерями микрокомпонентов из-за механического уноса пробы с газовой фазой, испарения легколетучих форм микрокомпонентов и сорбции на поверхности посуды, используемой при выпаривании. Для устранения этих потерь используют выпаривание сверху под ИК-лампой. Распространена отгонка с предварительным химическим превращением, т.е. после переведения в результате химических реакций макро- или микрокомпонента в легколетучие соединения. Для перевода макро- или микрокомпонентов в летучие соединения применяют газообразные, жидкие и твердые вещества: F 2 , CL 2 , Br 2 , HCL, HF, CCL 4 , BBr 3 , ALCL 3 и другие.

При возгонке (сублимации) осуществляется перевод вещества из твердого в газообразное состояние и последующее осаждение его в твердой форме (минуя жидкую фазу). К разделению возгонкой прибегают, как правило, если разделяемые компоненты трудно плавятся или трудно растворимы и поэтому не могут быть разделены перегонкой или кристаллизацией. При использовании этого метода для концентрирования микрокомпонентов ограничивается сравнительно небольшим числом сублимируемых матриц.

Используют также и электрохимические методы (электровыделение , цементация , электрофорез ) выделения и концентрирования. Наиболее распространенным является метод электровыделения , при котором отделяемое и концентрируемое вещество выделяется на твердых электродах в элементном состоянии или в виде какого-то соединения. Электрохимическое выделение основано на осаждении вещества электрическим током при контролируемом потенциале. Наиболее распространен вариант катодного осаждения металлов. Материалом электродов могут служить углерод (графит, стеклоуглерод), серебро, медь, сплавы ряда металлов.

Часто выделение проводят на ртутном макрокатоде. Состав выделяемого соединения зависит от условий электровыделения, свойств компонентов и материала электрода. Например, при потенциалах 540 мВ на графитовом электроде некоторые элементы выделяются в элементом состоянии (Ag, Bi, Cd, Cu, Pb), а часть в виде оксидов (Co, Cr, Fe, Mn). При концентрировании микрокомпонентов наиболее удобен вариант электролитического выделения микрокомпонентов, чем компонентов матрицы. В этих условиях уменьшаются потери микрокомпонентов, которые происходят при выделении матрицы за счет их механического захвата, а также образования интерметаллических соединений.

Метод цементации (называемый внутренним электролизом) заключается в восстановлении компонентов (обычно малых количеств) на металлах с отрицательными потенциалами (Al, Zn, Mg). При цементации происходят одновременно два процесса: катодный (выделение компонента) и анодный (растворение цементирующего металла). В качестве примера можно привести выделение микрокомпонентов из воды на металлах-цементаторах (Al, Zn, Mg) с последующим атомно-эмисиионным определением микроэлементов непосредственно в концентрате.

Метод электрофореза основан на различиях в скоростях движения частиц разного заряда, формы и размера в электрическом поле. На скорость движения частиц сильно влияет состав раствора, в частности РН, что используется для повышения селективности. Главная область применения электрофореза – биохимический анализ.

4.3. ХИМИЧЕСКИЕ МЕТОДЫ

4.8. ТЕРМИЧЕСКИЕ МЕТОДЫ

5. ЗАКЛЮЧЕНИЕ

6. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Химический анализ служит средством контроля производства и качества продукции в ряде отраслей народного хозяйства. На результатах анализа в различной степени базируется разведка полезных ископаемых. Анализ – главное средство контроля за загрязненностью окружающей среды. Выяснение химического состава почв, удобрений, кормов и сельскохозяйственной продукции важно для нормально функционирования агропромышленного комплекса. Химический анализ незаменим в медицинской диагностике, биотехнологии. От уровня химического анализа, оснащенности лаборатории методами, приборами и реактивами зависит развитие многих наук.

Научная основа химического анализа – аналитическая химия, наука, которая в течение столетий была частью, а иногда и основной частью химии.

Аналитическая химия – это наука об определении химического состава веществ и отчасти их химического строения. Методы аналитической химии позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Эти методы часто дают возможность узнать, в какой форме данный компонент присутствует в веществе, например установить степень окисления элемента. Иногда возможно оценить пространственное расположение компонентов.

При разработке методов часто приходится заимствовать идеи из смежных областей науки и приспосабливать их к своим целям. В задачу аналитической химии входит разработка теоретических основ методов, установление границ их применимости, оценка метрологических и других характеристик, создание методик анализа различных объектов.

Методы и средства анализа постоянно изменяются: привлекаются новые подходы, используются новые принципы, явления, часто из далеких областей знания.

Под методом анализа понимают достаточно универсальный и теоретически обоснованный способ определения состава безотносительно к определяемому компоненту и к анализируемому объекту. Когда говорят о методе анализа, имеют в виду принцип, положенный в основу, количественное выражение связи между составом и каким-либо измеряемым свойством; отобранные приемы осуществления, включая выявление и устранение помех; устройства для практической реализации и способы обработки результатов измерений. Методика анализа – это подробное описание анализа данного объекта с использованием выбранного метода.

Можно выделить три функции аналитической химии как области знания:

1. решение общих вопросов анализа,

2. разработка аналитических методов,

3. решение конкретных задач анализа.

Так же можно выделить качественный и количественный анализы. Первый решает вопрос о том, какие компоненты включает анализируемый объект, второй дает сведения о количественном содержании всех или отдельных компонентов.

2. КЛАССИФИКАЦИЯ МЕТОДОВ

Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделения компонентов, обнаружения (идентификации) и определения. Существуют гибридные методы, сочетающие разделение и определение. Методы обнаружения и определения имеют много общего.

Наибольшее значение имеют методы определения. Их можно классифицировать по характеру измеряемого свойства или способу регистрации соответствующего сигнала. Методы определения делятся на химические , физические и биологические . Химические методы базируются на химических (в том числе электрохимических) реакциях. Сюда можно отнести и методы, называемые физико-химическими. Физические методы основаны на физических явлениях и процессах, биологические – на явлении жизни.

Основные требования к методам аналитической химии: правильность и хорошая воспроизводимости результатов, низкий предел обнаружения нужных компонентов, избирательность, экспрессность, простота анализа, возможность его автоматизации.

Выбирая метод анализа, необходимо четко знать цель анализа, задачи, которые нужно при этом решить, оценить достоинства и недостатки доступных методов анализа.

3. АНАЛИТИЧЕСКИЙ СИГНАЛ

После отбора и подготовки пробы наступает стадия химического анализа, на которой и проводят обнаружение компонента или определение его количества. С этой целью измеряют аналитический сигнал . В большинстве методов аналитическим сигналом является среднее из измерений физической величины на заключительной стадии анализа, функционально связанной с содержанием определяемого компонента.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала – появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определении количества компонента измеряется величина аналитического сигнала – масса осадка, сила тока, интенсивность линии спектра и т.д.

4. МЕТОДЫ АНАЛИТИЧЕСКОЙ ХИМИИ

4.1. МЕТОДЫ МАСКИРОВАНИЯ, РАЗДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ

Маскирование.

Маскирование – это торможение или полное подавление химической реакции в присутствии веществ, способных изменить ее направление или скорость. При этом не происходит образование новой фазы. Различают два вида маскирование – термодинамическое (равновесное) и кинетическое (неравновесное). При термодинамическом маскировании создаются условия, при которых условная константа реакции понижается до такой степени, что реакция идет незначительно. Концентрация маскируемого компонента становится недостаточной для того, что бы надежно зафиксировать аналитический сигнал. Кинетическое маскирование основано на увеличении разницы между скоростями реакции маскируемого и определяемого веществ с одним и тем же реагентом.

Разделение и концентрирование.

Необходимость разделения и концентрирования может быть обусловлена следующими факторами: проба содержит компоненты, мешающие определению; концентрация определяемого компонента ниже предела обнаружения метода; определяемые компоненты неравномерно распределены в пробе; отсутствуют стандартные образцы для градуировки приборов; проба высокотоксична, радиоактивна и дорога.

Разделение – это операция (процесс), в результате которой компоненты, составляющие исходную смесь, отделяются один от другого.

Концентрирование - это операция (процесс), в результате которой повышается отношение концентрации или количества микрокомпонентов к концентрации или количеству макрокомпонента.

Осаждение и соосаждение.

Осаждение, как правило, применяют для разделения неорганических веществ. Осаждение микрокомпонентов органическими реагентами, и особенно их соосаждение, обеспечивают высокий коэффициент концентрирования. Эти методы используют в комбинации с такими методами определения, которые рассчитаны на получение аналитического сигнала от твердых образцов.

Разделение путем осаждения основано на различной растворимости соединений, преимущественно в водных растворах.

Соосаждение – это распределение микрокомпонента между раствором и осадком.

Экстракция.

Экстракция – это физико-химический процесс распределения вещества между двумя фазами, чаще всего между двумя несмешивающимися жидкостями. Так же это процесс массопереноса с химическими реакциями.

Экстракционные методы пригодны для концентрирования, извлечения микрокомпонентов или макрокомпонентов, индивидуального и группового выделения компонентов при анализе разнообразных промышленных и природных объектов. Метод прост и быстр в выполнении, обеспечивает высокую эффективность разделения и концентрирования и совместим с разными методами определения. Экстракция позволяет изучать состояние веществ в растворе при различных условиях, определять физико-химические характеристики.

Сорбция.

Сорбцию хорошо используют для разделения и концентрирования веществ. Сорбционные методы обычно обеспечивают хорошую селективность разделения, высокие значения коэффициентов концентрирования.

Сорбция – процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе (сорбентами).

Электролитическое выделение и цементация.

Наиболее распространен метод электоровыделения, при котором отделяемое или концентрированное вещество выделяют на твердых электродах в элементарном состоянии или в виде какого-то соединения. Электролитическое выделение (электролиз) основано на осаждении вещества электрическим током при контролируемом потенциале. Наиболее распространен вариант катодного осаждения металлов. Материалом электродов может служить углерод, платина, серебро, медь вольфрам и т.д.

Электрофорез основан на различиях в скоростях движения частиц разного заряда, формы и размера в электрическом поле. Скорость движения зависит от заряда, напряженности поля и радиуса частиц. Различают два варианта электрофореза: фронтальный (простой) и зонный (на носителе). В первом случае небольшой объем раствора, содержащего разделяемые компоненты, помещают в трубку с раствором электролита. Во втором случае передвижение происходит в стабилизирующей среде, которая удерживает частицы на местах после отключения электрического поля.

Метод цементации заключается в восстановлении компонентов (обычно малых количеств) на металлах с достаточно отрицательными потенциалами или альмагамах электроотрицательных металлов. При цементации происходит одновременно два процесса: катодный (выделение компонента) и анодный (растворение цементирующего металла).

Методы испарения.

Методы дистилляции основаны на разной летучести веществ. Вещество переходит из жидкого состояния в газообразное, а затем конденсируется, образуя снова жидкую или иногда твердую фазу.

Простая отгонка (выпаривание) – одноступенчатый процесс разделения и концентрирования. При выпаривании удаляются вещества, которые находятся в форме готовых летучих соединений. Это могут быть макрокомпоненты и микрокомпоненты, отгонку последних применяют реже.

Возгонка (сублимация) - перевод вещества из твердого состояния в газообразное и последующее осаждение его в твердой форме (минуя жидкую фазу). К разделению возгонкой прибегают, как правило, если разделяемые компоненты трудно плавятся или трудно растворимы.

Управляемая кристаллизация.

При охлаждении раствора, расплава или газа происходит образование зародышей твердой фазы – кристаллизация, которая может быть неуправляемой (объемной) и управляемой. При неуправляемой кристаллизации кристаллы возникают самопроизвольно во всем объеме. При управляемой кристаллизации процесс задается внешними условиями (температура, направление движения фаз и т.п.).

Различают два вида управляемой кристаллизации: направленную кристаллизацию (в заданном направлении) и зонную плавку (перемещение зоны жидкости в твердом теле в определенном направлении).

При направленной кристаллизации возникает одна граница раздела между твердым телом и жидкостью – фронт кристаллизации. В зонной плавке две границы: фронт кристаллизации и фронт плавления.

4.2. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ

Хроматография – наиболее часто используемый аналитический метод. Новейшими хроматографическими методами можно определять газообразные, жидкие и твердые вещества с молекулярной массой от единиц до 10 6 . Это могут быть изотопы водорода, ионы металлов, синтетические полимеры, белки и др. С помощью хроматографии получена обширная информация о строении и свойствах органических соединений многих классов.

Хроматография – это физико-химический метод разделения веществ, основанный на распределении компонентов между двумя фазами – неподвижной и подвижной. Неподвижной фазой (стационарной) обычно служит твердое вещество (его часто называют сорбентом) или пленка жидкости, нанесенная на твердое вещество. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу.

Метод позволяет разделять многокомпонентную смесь, идентифицировать компоненты и определять ее количественный состав.

Хроматографические методы классифицируют по следующим признакам:

а) по агрегатному состоянию смеси, в котором производят ее разделение на компоненты – газовая, жидкостная и газожидкостная хроматография;

б) по механизму разделения – адсорбционная, распределительная, ионообменная, осадочная, окислительно-восстановительная, адсорбционно - комплексообразовательная хроматография;

в) по форме проведения хроматографического процесса – колоночная, капиллярная, плоскостная (бумажная, тонкослойная и мембранная).

4.3. ХИМИЧЕСКИЕ МЕТОДЫ

В основе химических методов обнаружения и определения лежат химические реакции трех типов: кислотно-основные, окислительно-восстановительные и комплексообразования. Иногда они сопровождаются изменением агрегатного состояния компонентов. Наибольшее значение среди химических методов имеют гравиметрический и титриметрический. Эти аналитические методы называются классическими. Критериями пригодности химической реакции как основы аналитического метода в большинстве случаев являются полнота протекания и большая скорость.

Гравиметрические методы.

Гравиметрический анализ заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего такое выделение проводят осаждением. Реже определяемый компонент выделяют в виде летучего соединения (методы отгонки). В ряде случаев гравиметрия – лучший способ решения аналитической задачи. Это абсолютный (эталонный) метод.

Недостатком гравиметрический методов является длительность определения, особенно при серийных анализах большого числа проб, а так же неселективность – реагенты-осадители за небольшим исключением редко бывают специфичны. Поэтому часто необходимы предварительные разделения.

Аналитическим сигналов в гравиметрии является масса.

Титриметрические методы.

Титриметрическим методом количественного химического анализа называют метод, основанный на измерении количества реагента В, затраченного на реакцию с определяемым компонентом А. Практически удобнее всего прибавлять реагент в виде его раствора точно известной концентрации. В таком варианте титрованием называют процесс непрерывного добавления контролируемого количества раствора реагента точно известной концентрации (титрана) к раствору определяемого компонента.

В титриметрии используют три способа титрования: прямое, обратное и титрование заместителя.

Прямое титрование – это титрование раствора определяемого вещества А непосредственно раствором титрана В. Его применяют в том случае, если реакция между А и В протекает быстро.

Обратное титрование заключается в добавлении к определяемому веществу А избытка точно известного количества стандартного раствора В и после завершения реакции между ними, титровании оставшегося количества В раствором титрана В’. Этот способ применяют в тех случаях, когда реакция между А и В протекает недостаточно быстро, либо нет подходящего индикатора для фиксирования точки эквивалентности реакции.

Титрование по заместителю заключается в титровании титрантом В не определяемого количества вещества А, а эквивалентного ему количества заместителя А’, получающегося в результате предварительно проведенной реакции между определяемым веществом А и каким-либо реагентом. Такой способ титрования применяют обычно в тех случаях, когда невозможно провести прямое титрование.

Кинетические методы.

Кинетические методы основаны на использовании зависимости скорости химической реакции от концентрации реагирующих веществ, а в случае каталитических реакций и от концентрации катализатора. Аналитическим сигналом в кинетических методах является скорость процесса или пропорциональная ей величина.

Реакция, положенная в основу кинетического метода, называется индикаторной. Вещество, по изменению концентрации которого судят о скорости индикаторного процесса, - индикаторным.

Биохимические методы.

Среди современных методов химического анализа важное место занимают биохимические методы. К биохимическим методам относят методы, основанные на использовании процессов, происходящих с участием биологических компонентов (ферментов, антител и т.п.). Аналитическим сигналом при этом чаще всего являются либо начальная скорость процесса, либо конечная концентрация одного из продуктов реакции, определяемая любым инструментальным методом.

Ферментативные методы основаны на использовании реакций, катализируемых ферментами – биологическими катализаторами, отличающимися высокой активностью и избирательностью действия.

Иммунохимические методы анализа основаны на специфическом связывании определяемого соединения – антигена соответствующими антителами. Иммунохимическая реакция в растворе между антителами и антигенами – сложный процесс, протекающий в несколько стадий.

4.4. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и поддающийся правильному измерению, может служить аналитическим сигналом.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т.д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Существуют различные способы классификации электрохимических методов – от очень простых до очень сложных, включающих рассмотрение деталей электродных процессов.

4.5. СПЕКТРОСКОПИЧЕСКИЕ МЕТОДЫ

К спектроскопическим методам анализа относят физические методы, основанные на взаимодействии электромагнитного излучения с веществом. Это взаимодействие приводит к различным энергетическим переходам, которые регистрируются экспериментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения.

4.6. МАСС-СПЕКТРОМЕТРИЧЕСКИЕ МЕТОДЫ

Масс-спектрометрический метод анализа основан на ионизации атомов и молекул излучаемого вещества и последующем разделении образующихся ионов в пространстве или во времени.

Наиболее важное применение масс-спектрометрия получила для идентификации и установления структуры органических соединений. Молекулярный анализ сложных смесей органических соединений целесообразно проводить после их хроматографического разделения.

4.7. МЕТОДЫ АНАЛИЗА, ОСНОВАННЫЕ НА РАДИОАКТИВНОСТИ

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются и в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе. Эти методы весьма многочисленны и разнообразны. Можно выделить четыре основные группы: радиоактивный анализ; методы изотопного разбавления и другие радиоиндикаторные методы; методы, основанные на поглощении и рассеянии излучений; чисто радиометрические методы. Наибольшее распространение получил радиоактивационный метод . Этот метод появился после открытия искусственной радиоактивности и основан на образовании радиоактивный изотопов определяемого элемента при облучении пробы ядерными или g -частицами и регистрации полученной при активации искусственной радиоактивности.

4.8. ТЕРМИЧЕСКИЕ МЕТОДЫ

Термические методы анализа основаны на взаимодействии вещества с тепловой энергией. Наибольшее применение в аналитической химии находят термические эффекты, которые являются причиной или следствием химических реакций. В меньшей степени применяются методы, основанные на выделении или поглощении теплоты в результате физических процессов. Это процессы, связанные с переходом вещества из одной модификации в другую, с изменением агрегатного состояния и другими изменениями межмолекулярного взаимодействия, например, происходящими при растворении или разбавлении. В таблице приведены наиболее распространенные методы термического анализа.

Термические методы успешно используются для анализа металлургических материалов, минералов, силикатов, а так же полимеров, для фазового анализа почв, определения содержания влаги в пробах.

4.9. БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Биологические методы анализа основаны на том, что для жизнедеятельности – роста, размножения и вообще нормального функционирования живых существ необходима среда строго определенного химического состава. При изменении этого состава, например, при исключении из среды какого-либо компонента или введении дополнительного (определяемого) соединения организм через какое-то время, иногда практически сразу, подает соответствующий ответный сигнал. Установление связи характера или интенсивности ответного сигнала организма с количеством введенного в среду или исключенного из среды компонента служит для его обнаружения и определения.

Аналитическими индикаторами в биологических методах являются различные живые организмы, их органы и ткани, физиологические функции и т.д. В роли индикаторного организма могут выступать микроорганизмы, беспозвоночные, позвоночные, а так же растения.

5. ЗАКЛЮЧЕНИЕ

Значение аналитической химии определяется необходимостью общества в аналитических результатах, в установлении качественного и количественного состава веществ, уровнем развития общества, общественной потребностью в результатах анализа, так же и уровнем развития самой аналитической химии.

Цитата из учебника по аналитической химии Н.А.Меншуткина 1897 года выпуска: «Представив весь ход занятий по аналитической химии в виде задач, решение которых предоставлено занимающемуся, мы должны указать на то, что для подобного решения задач аналитическая химия даст строго определенный путь. Эта определенность (систематичность решения задач аналитической химии) имеет большое педагогическое значение. Занимающийся приучается при этом применять свойства соединений к решению вопросов, выводить условия реакций, комбинировать их. Весь этот ряд умственных процессов можно выразить так: аналитическая химия приучает химически думать. Достижение последнего представляется самым важным для практических занятий аналитической химией».

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. К.М.Ольшанова, С.К. Пискарева, К.М.Барашков «Аналитическая химия», Москва, «Химия», 1980 г.

2. «Аналитическая химия. Химические методы анализа», Москва, «Химия», 1993 г.

3. «Основы аналитической химии. Книга 1», Москва, «Высшая школа», 1999 г.

4. «Основы аналитической химии. Книга 2», Москва, «Высшая школа», 1999 г.