Программа для рисования четырёхмерного куба. Тессеракт и вообще n-мерные кубы Четырехмерный куб вращение

Если вы поклонник фильмов про Мстителей, первое, что может прийти вам на ум, когда вы услышите слово «Tesseract», это прозрачный кубообразный сосуд Камня бесконечности, содержащий безграничную силу.

Для поклонников Вселенной Marvel Тессеракт — это светящийся синий куб, от которого люди с не только Земли, но и других планет тоже сходят с ума. Вот почему все Мстители объединились, чтобы защитить Землян от чрезвычайно разрушительных сил Тессеракта.

Однако нужно сказать следующее: Тессеракт — это фактическое геометрическое понятие, а точнее, форма, существующая в 4D. Это не просто синий куб от Мстителей … это реальная концепция.

Тессеракт — это объект в 4 измерениях. Но прежде чем мы подробно объясним его, давайте начнем с самого начала.

Что такое «измерение»?

Каждый человек слышал термины 2D и 3D, представляя соответственно двумерные или трехмерные объекты пространства. Но что представляют собой эти измерения?

Измерение — это просто направление, в котором вы можете пойти. Например, если вы рисуете линию на листе бумаги, вы можете идти либо влево / вправо (по оси x), либо в направлении вверх / вниз (ось y). Таким образом, мы говорим, что бумага двумерна, так как вы можете идти только в двух направлениях.

В 3D есть ощущение глубины.

Теперь, в реальном мире, помимо упомянутых выше двух направлений (слева / справа и вверх / вниз), вы также можете пойти «в / из». Следовательно, в 3D-пространстве добавляется ощущение глубины. Поэтому мы говорим, что реальная жизнь 3-мерная.

Точка может представлять 0 измерений (поскольку она не перемещается в любом направлении), линия представляет 1 измерение (длина), квадрат представляет 2 измерения (длина и ширина), а куб представляет 3 измерения (длина, ширина и высота).

Возьмите 3D-куб и замените каждую его грань (которая в настоящее время является квадратом) кубом. И вот! Форма, которую вы получаете, — это и есть тессеракт.

Что такое тессеракт?

Проще говоря, тессеракт — это куб в 4-мерном пространстве. Вы также можете сказать, что это 4D-аналог куба. Это 4D-форма, где каждая грань является кубом.

3D-проекция тессеракта, выполняющая двойное вращение вокруг двух ортогональных плоскостей.
Изображение: Jason Hise

Вот простой способ концептуализации размеров: квадрат — двумерный; поэтому каждый из его углов имеет 2 линии, отходящих от него под углом 90 градусов друг к другу. Куб — 3D, поэтому каждый из его углов имеет 3 линии, сходящие с него. Аналогичным образом, тессеракт представляет собой 4D-форму, поэтому каждый угол имеет 4 линии, отходящих от него.

Почему трудно представить себе тессеракт?

Поскольку мы, как люди, эволюционировали, чтобы визуализировать объекты в трех измерениях, все, что входит в дополнительные измерения, такие как 4D, 5D, 6D и т. д., не имеет для нас большого смысла, потому что мы вообще не можем их представить. Наш мозг не может понять 4-го измерения в пространстве. Мы просто не можем об этом думать.

Однако только потому, что мы не можем визуализировать концепцию многомерных пространств, это не значит, что она не может существовать.

Математически, тессеракт — совершенно точная форма. Аналогично, все формы в более высоких измерениях, то есть 5D и 6D, также математически правдоподобны.

Подобно тому, как куб может быть развернут на 6 квадратов в 2D-пространстве, тессеракт можно развернуть в 8 кубов в 3D-пространстве.

Удивительно и непонятно, не так ли?

Итак, тессеракт — это «реальная концепция», которая абсолютно правдоподобна математически, а не только сияющий синий куб, за который сражаются в фильмах про Мстителей.

Гиперкуб и Платоновы тела

Смоделировать в системе «Вектор» усеченныйикосаэдр («футбольный мяч»)
у которого каждый пятиугольник ограниченшестиугольниками

Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32 ), а число рёбер возрастает до 30+12×5=90 .

Шаги построения усеченного икосаэдра в системе «Вектор»

Фигуры в 4-мерном пространстве.

--à

--à ?

Например, даны куб и гиперкуб. В гиперкубе 24 грани. Значит, у 4-мерного октаэдра будет 24 вершины. Хотя нет, у гиперкуба – 8 граней кубов – в каждом центр -вершина. Значит, у 4-мерного октаэдрабудет 8 вершини того легче.

4-мерный октаэдр . Он состоит из восьми равносторонних и равных между собой тэтраэдров,
соединенных по четыре у каждой вершины.

Рис. Попытка смоделировать
гипершар-гиперсферу в системе «Вектор»

Передняя – задняя грани – шары без искажения. Еще шестьшаров – можно задать черезэллипсоиды или квадратичные поверхности (через 4 линии контура как образующие) иличерез грани (сначала задаются через образующие).

Еще приемы «построить» гиперсферу
- тот же «футбольный мяч» в 4-мерном пространстве

Приложение 2

Для выпуклых многогранников имеет место свойство, связывающее число его вершин, ребер и граней, доказанное в 1752 году Леонардом Эйлером, и получившее название теоремы Эйлера.

Прежде чем его сформулировать рассмотрим известные нам многогранники и заполним следующую таб­лицу, в которой В - число вершин, Р - ребер и Г - граней данного мно­гогранника:

Название многогранника

Треугольная пирамида

Четырехугольная пирамида

Треугольная призма

Четырехугольная призма

n - угольная пирамида

n +1

2n

n +1

n - угольная призма

2n

3n

n+2

n - угольная усеченная

пирамида

2n

3n

n+2

Из этой таблицы непосредственно видно, что для всех выбранных мно­гогранников имеет место равенство В - Р + Г = 2. Оказывается, что это равенство справедливо не только для этих многогранников, но и для про­извольного выпуклого многогранника.

Теорема Эйлера. Для любого выпуклого многогранника имеет место равенство

В - Р + Г = 2,

где В - число вершин, Р - число ребер и Г - число граней данного мно­гогранника.

Доказательство. Для доказательства этого равенства представим поверхность данного многогранника сделанной из эластичного материала. Удалим (вырежем) од­ну из его граней и оставшуюся поверхность растянем на плоскости. Полу­чим многоугольник (образованный ребрами удаленной грани многогранника), разбитый на более мелкие многоугольники (образованные остальными гранями многогранника).

Заметим, что многоугольники можно деформировать, увеличивать, уменьшать или даже искривлять их стороны, лишь бы при этом не происходило разрывов сторон. Число вершин, ребер и граней при этом не изменится.

Докажем, что для полученного разбиения многоугольника на более мелкие многоугольники имеет место равенство

(*)В - Р + Г " = 1,

где В – общее число вершин, Р – общее число ребер и Г " – число многоугольников, входящих в разбиение. Ясно, что Г "= Г – 1, где Г – число граней данного мно­гогранника.

Докажем, что равенство (*) не изменится, если в каком-нибудь многоугольнике данного разбиения провести диагональ (рис. 5, а). Действитель­но,после проведения такой диагонали в новом разбиении будет В вершин, Р+1 ребер и количество многоугольников увеличится на единицу. Следовательно, имеем

В - (Р + 1) + (Г "+1) = В – Р + Г ".


Пользуясь этим свойством, проведем диагонали, разбивающие входя­щие многоугольники на треугольники, и для полученного разбиения пока­жем выполнимость равенства (*) (рис. 5, б). Для этого будем последо­вательно убирать внешние ребра, уменьшая количество треугольников. При этом возможны два случая:

а) для удаления треугольника ABC требуется снять два ребра, в на­шем случае AB и BC ;

б) для удаления треугольника MKN требуется снять одно ребро, в нашем случае MN .

В обоих случаях равенство (*) не изменится. Например, в первом случае послеудаления треугольника граф будет состоять из В – 1 вершин, Р – 2 ребер и Г " – 1 многоугольника:

(В - 1) - (Р + 2) + (Г " – 1) = В – Р + Г ".

Самостоятельно рассмотрите второй случай.

Таким образом, удаление одного треугольника не меняет равенство (*). Продолжая этот процесс удаления треугольников, в конце концов, мы придем к разбиению, состоящему из одного треугольника. Для такого раз­биения В = 3, Р = 3, Г " = 1 и, следовательно, B – Р + Г " = 1. Значит, равенство (*) имеет место и для исходного разбиения, откуда оконча­тельно получаем, что для данного разбиения многоугольника справедливо равенство (*). Таким образом, для исходного выпуклого многогранника справедливо равенство В - Р + Г = 2.

Пример многогранника, для которого не выполняется соотношение Эйлера, показан на рисунке 6. Этот многогранник имеет 16 вершин, 32 ребра и 16 граней. Таким образом, для этого многогранника выполняется равенство В – Р + Г = 0.

Приложение 3.

Фильм Куб 2: Гиперкуб» (англ. Cube 2: Hypercube) - фантастический фильм, продолжение фильма «Куб».

Восемь незнакомых людей просыпаются в комнатах, имеющих форму куба. Комнаты находятся внутри четырёхмерного гиперкуба. Комнаты постоянно перемещаются путём "квантовой телепортации", и если перелезть в соседнюю комнату, то вернуться в прежнюю уже маловероятно. В гиперкубе пересекаются параллельные миры, время в некоторых комнатах течёт по-разному, и некоторые комнаты являются смертельными ловушками.

Сюжетно картина во многом повторяет историю первой части, что также отражается и на образах некоторых персонажей. В комнатах гиперкуба погибает нобелевский лауреат Розенцвейг, рассчитавший точное время уничтожения гиперкуба .

Критика

Если в первой части люди заточенные в лабиринт пытались помочь друг-другу, в этом фильме каждый сам за себя. Очень много лишних спецэффектов (они же ловушки) которые ни как не связывают логически данную часть фильма с предыдущей. То есть получается фильм Куб 2 - это этакий лабиринт будущего 2020-2030 годов, но никак не 2000. В первой части все виды ловушек может теоретически создать человек. Во второй части эти ловушки - программа какого-то компьютера, так называемая "Виртуальная реальность".

Точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:

Тессеракт ограничен восемью гиперплоскостями , пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства .

В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.

Построение тессеракта на плоскости

Одномерный отрезок АВ служит стороной двумерного квадрата CDBA, квадрат - стороной куба CDBAGHFE, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и ещё 8 рёбер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его рёбер.

Как сторонами квадрата являются 4 одномерных отрезка, а сторонами (гранями) куба являются 6 двухмерных квадратов, так и для «четырёхмерного куба» (тессеракта) сторонами являются 8 трёхмерных кубов. Пространства противоположных пар кубов тессеракта (то есть трёхмерные пространства, которым эти кубы принадлежат) параллельны. На рисунке это кубы: CDBAGHFE и KLJIOPNM, CDBAKLJI и GHFEOPNM, EFBAMNJI и GHDCOPLK, CKIAGOME и DLJBHPNF.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку . Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один - грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Проекции

На двумерное пространство

Данная структура сложна для воображения, но возможно спроектировать тессеракт в двумерные или трёхмерные пространства . Кроме того, проектирование на плоскость позволяет легко понять расположение вершин гиперкуба. Таким образом, можно получить изображения, которые больше не отражают пространственные отношения в пределах тессеракта, но которые иллюстрируют структуру связи вершин, как в следующих примерах:

Третья картинка демонстрирует тессеракт в изометрии , относительно точки построения. Это представление представляет интерес при использовании тессеракта как основания для топологической сети, чтобы связать многократные процессоры в параллельных вычислениях.

На трёхмерное пространство

Одна из проекций тессеракта на трёхмерное пространство представляет собой два вложенных трёхмерных куба, соответствующие вершины которых соединены между собой отрезками. Внутренний и внешний кубы имеют разные размеры в трёхмерном пространстве, но в четырёхмерном пространстве это равные кубы. Для понимания равности всех кубов тессеракта была создана вращающаяся модель тессеракта.

  • Шесть усечённых пирамид по краям тессеракта - это изображения равных шести кубов. Однако эти кубы для тессеракта - как квадраты (грани) для куба. Но на самом деле тессеракт можно разделить на бесконечное количество кубов, как куб - на бесконечное количество квадратов, или квадрат - на бесконечное число отрезков.

Ещё одна интересная проекция тессеракта на трёхмерное пространство представляет собой ромбододекаэдр с проведёнными четырьмя его диагоналями, соединяющими пары противоположных вершин при больших углах ромбов. При этом 14 из 16 вершин тессеракта проецируются в 14 вершин ромбододекаэдра , а проекции 2 оставшихся совпадают в его центре. В такой проекции на трёхмерное пространство сохраняются равенство и параллельность всех одномерных, двухмерных и трёхмерных сторон.

Стереопара

Стереопара тессеракта изображается как две проекции на трёхмерное пространство. Такое изображение тессеракта разрабатывалось с целью представить глубину, как четвёртое измерение. Стереопара рассматривается так, чтобы каждый глаз видел только одно из этих изображений, возникает стереоскопическая картина, воспроизводящая глубину тессеракта.

Развёртка тессеракта

Поверхность тессеракта может быть развёрнута в восемь кубов (аналогично тому, как поверхность куба может быть развёрнута в шесть квадратов). Существует 261 различная развёртка тессеракта . Развёртки тессеракта могут быть подсчитаны нанесением на граф соединённых углов.

Тессеракт в искусстве

  • У Эдвине А. «Новая Равнина Абботта», гиперкуб выступает рассказчиком.
  • В одном эпизоде «Приключений Джимми Нейтрона» «мальчик-гений» Джимми изобретает четырёхмерный гиперкуб, идентичный фолдбоксу из романа «Дорога славы » (1963) Роберта Хайнлайна .
  • Роберт Э. Хайнлайн упоминал гиперкубы, по крайней мере, в трёх научно-фантастических рассказах. В «Доме четырёх измерений» («Дом, который построил Тил», ) он описал дом, построенный как развёртка тессеракта, а затем вследствие землетрясения «сложившийся» в четвёртом измерении и ставший «реальным» тессерактом.
  • В романе «Дорога славы » Хайнлайна описана гиперразмерная шкатулка, которая была изнутри больше, чем снаружи.
  • Рассказ Генри Каттнера «Все тенали бороговы» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.
  • В романе Алекса Гарленда (), термин «тессеракт» используется для трёхмерной развёртки четырёхмерного гиперкуба, а не гиперкуба непосредственно. Это метафора, призванная показать, что познающая система должна быть шире познаваемой.
  • Сюжет фильма «Куб 2: Гиперкуб » сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.
  • Телесериал «Андромеда » использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены, чтобы управлять пространством и временем .
  • Картина «Распятие на кресте » (Corpus Hypercubus) Сальвадора Дали ().
  • Комиксы «Nextwave comic book» изображают средство передвижения, включающее в себя 5 зон тессеракта.
  • В альбоме Voivod Nothingface одна из композиций названа «В моём гиперкубе».
  • В романе Энтони Пирса «Маршрут Куба» одна из орбитальных лун Международной ассоциации развития называется тессерактом, который был сжат в 3 измерения.
  • В сериале «Школа „Чёрная дыра“ » в третьем сезоне есть серия «Тессеракт». Лукас нажимает на секретную кнопку и школа начинает «складываться как математический тессеракт».
  • Термин «тессеракт» и производный от него термин «тессировать» встречается в повести Мадлен Л’Энгл «Складка времени».
  • TesseracT название британской джент группы.
  • В серии фильмов Кинематографическая вселенная Marvel Тессеракт - это ключевой элемент сюжета, космический артефакт в форме гиперкуба.
  • В рассказе Роберта Шекли «Мисс Мышка и четвертое измерение» один писатель-эзотерик, знакомец автора, пытается увидеть тессеракт, часами глядя на сконструированный им прибор: шар на ножке с воткнутыми в него стержнями, на которые насажены кубы, обклеенные всеми подряд эзотерическими символами. В рассказе упоминается труд Хинтона.
  • В фильмах Первый Мститель, Мстители. Тессеракт-энергия все вселенной

Другие названия

  • Гексадекахорон (англ. Hexadecachoron )
  • Октохорон (англ. Octachoron )
  • Тетракуб
  • 4-Куб
  • Гиперкуб (если не оговаривается число измерений)

Примечания

Литература

  • Charles H. Hinton. Fourth Dimension, 1904. ISBN 0-405-07953-2
  • Martin Gardner, Mathmatical Carnival, 1977. ISBN 0-394-72349-X
  • Ian Stewart, Concepts of Modern Mathematics, 1995. ISBN 0-486-28424-7

Ссылки

На русском языке
  • Программа Transformator4D. Формирование моделей трёхмерных проекций четырёхмерных объектов (в том числе и Гиперкуба).
  • Программа, реализующая построение тессеракта и все его афинные преобразования, с исходниками на С++.

На английском языке

  • Mushware Limited - программа вывода тессеракта (Tesseract Trainer , лицензия совместима с GPLv2) и шутер от первого лица в четырёхмерном пространстве (Adanaxis ; графика, в основном, трёхмерная; есть версия под GPL в репозиториях ОС).

Тессеракт - четырёхмерный гиперкуб - куб в четырёхмерном пространстве.
Согласно Оксфордскому словарю, слово tesseract было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853-1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру тетракубом (греч. τετρα - четыре) - четырёхмерным кубом.
Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:
[-1, 1]^4 = {(x_1,x_2,x_3,x_4) : -1 = Тессеракт ограничен восемью гиперплоскостями x_i= +- 1, i=1,2,3,4 , пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.
Популярное описание
Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.
В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.
Одномерный отрезок АВ служит стороной двумерного квадрата CDBA, квадрат - стороной куба CDBAGHFE, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и ещё 8 рёбер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его рёбер.
Как сторонами квадрата являются 4 одномерных отрезка, а сторонами (гранями) куба являются 6 двухмерных квадратов, так и для «четырёхмерного куба» (тессеракта) сторонами являются 8 трёхмерных кубов. Пространства противоположных пар кубов тессеракта (то есть трёхмерные пространства, которым эти кубы принадлежат) параллельны. На рисунке это кубы: CDBAGHFE и KLJIOPNM, CDBAKLJI и GHFEOPNM, EFBAMNJI и GHDCOPLK, CKIAGOME и DLJBHPNF.
Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.
Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.
Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.
Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один - грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».
Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

В геометрии гиперкуб - это n -мерная аналогия квадрата (n = 2) и куба (n = 3). Это замкнутая выпуклая фигура, состоящая из групп параллельных линий, расположенных на противоположных краях фигуры, и соединенных друг с другом под прямым углом.

Эта фигура также известная под названием тессеракт (tesseract). Тессеракт относится к кубу, как куб относится к квадрату. Более формально, тессеракт может быть описан как правильный выпуклый четырехмерный политоп (многогранник), чья граница состоит из восьми кубических ячеек.

Согласно Окфордскому словарю английского языка, слово "tesseract" было придумано в 1888 Чарльзом Говардом Хинтоном (Charles Howard Hinton) и использовано в его книге "Новая эра мысли" ("A New Era of Thought"). Слово было образовано от греческого "τεσσερες ακτινες" ("четыре луча"), имеется в виде четыре оси координат. Кроме этого, в некоторых источниках, эту же фигуру называли тетракубом (tetracube).

n -мерный гиперкуб также называется n-кубом .

Точка - это гиперкуб размерности 0. Если сдвинуть точку на единицу длины, получится отрезок единичной длины - гиперкуб размерности 1. Далее, если сдвинуть отрезок на единицу длины в направлении перпендикулярном направлению отрезка получится куб - гиперкуб размерности 2. Сдвигая квадрат на единицу длины в направлении перпендикулярном плоскости квадрата, получается куб - гиперкуб размерности 3. Этот процесс может быть обобщен на любое количество измерений. Например, если сдвинуть куб на единицу длины в четвертом измерении, получится тессеракт.

Семейство гиперкубов является одним из немногих правильных многогранников, которые могут быть представлены в любом измерении.

Элементы гиперкуба

Гиперкуб размерности n имеет 2n "сторон" (одномерная линия имеет 2 точки; двухмерный квадрат - 4 стороны; трехмерный куб - 6 граней; четырехмерный тессеракт - 8 ячеек). Количество вершин (точек) гиперкуба равно 2 n (например, для куба - 2 3 вершин).

Количество m -мерных гиперкубов на границе n -куба равно

Например, на границе гиперкуба находятся 8 кубов, 24 квадрата, 32 ребра и 16 вершин.

Элементы гиперкубов
n-куб Название Вершина
(0-грань)
Ребро
(1-грань)
Грань
(2-грань)
Ячейка
(3-грань)
(4-грань) (5-грань) (6-грань) (7-грань) (8-грань)
0-куб Точка 1
1-куб Отрезок 2 1
2-куб Квадрат 4 4 1
3-куб Куб 8 12 6 1
4-куб Тессеракт 16 32 24 8 1
5-куб Пентеракт 32 80 80 40 10 1
6-куб Хексеракт 64 192 240 160 60 12 1
7-куб Хептеракт 128 448 672 560 280 84 14 1
8-куб Октеракт 256 1024 1792 1792 1120 448 112 16 1
9-куб Эненеракт 512 2304 4608 5376 4032 2016 672 144 18

Проекция на плоскость

Формирование гиперкуба может быть представлено следующим способом:

  • Две точки A и B могут быть соединены, образуя отрезок AB.
  • Два параллельных отрезка AB и CD могут быть соединены, образуя квадрат ABCD.
  • Два параллельных квадрата ABCD и EFGH могут быть соединены, образуя куб ABCDEFGH.
  • Два параллельных куба ABCDEFGH и IJKLMNOP могут быть соединены, образуя гиперкуб ABCDEFGHIJKLMNOP.

Последнюю структуру нелегко представить, но возможно изобразить ее проекцию на двухмерное или трехмерное пространство. Более того, проекции на двухмерную плоскость могут быть более полезны возможностью перестановки позиций спроецированных вершин. В этом случае можно получить изображения, которые больше не отражают пространственные отношения элементов внутри тессеракта, но иллюстрируют структуру соединений вершин, как на примерах ниже.

На первой иллюстрации показано, как в принципе образуется тессеракт путем соединения двух кубов. Эта схема похожа на схему создания куба из двух квадратов. На второй схеме показано, что все ребра тессеракта имеют одинаковую длину. Эта схема также заставляют искать соединенные друг с другом кубы. На третьей схеме вершины тессеракта расположены в соответствии с расстояниями вдоль граней относительно нижней точки. Эта схема интересна тем, что она используется как базовая схема для сетевой топологии соединения процессоров при организации параллельных вычислений: расстояние между любыми двумя узлами не превышает 4 длин ребер, и существует много различных путей для уравновешивания нагрузки.

Гиперкуб в искусстве

Гиперкуб появился в научно-фантастической литературе с 1940 года, когда Роберт Хайнлайн в рассказе "Дом, который построил Тил" ("And He Built a Crooked House") описал дом, построенный по форме развертки тессеракта. В рассказе этот Далее этот дом сворачивается, превращаясь в четырехмерный тессеракт. После этого гиперкуб появляется во многих книгах и новеллах.

В фильме "Куб 2: Гиперкуб" рассказывается о восьми людях, запертых в сети гиперкубов.

На картине Сальвадора Дали "Распятие" ("Crucifixion (Corpus Hypercubus)", 1954) изображен Иисус распятый на развертке тессеракта. Эту картину можно увидеть в Музее Искусств (Metropolitan Museum of Art) в Нью-Йорке.

Заключение

Гиперкуб - одна из простейших четырехмерных объектов, на примере которого можно увидеть всю сложность и необычность четвертого измерения. И то, что выглядит невозможным в трех измерениях, возможно в четырех, например, невозможные фигур. Так, например, бруски невозможного треугольника в четырех измерениях будут соединены под прямыми углами. И эта фигура будет выглядеть так со всех точек обзора, и не будет искажаться в отличие от реализаций невозможного треугольника в трехмерном пространстве (см.